%0 Journal Article %T Electrodeposition of Polypyrrole/Reduced Graphene Oxide/Iron Oxide Nanocomposite as Supercapacitor Electrode Material %A Y. C. Eeu %A H. N. Lim %A Y. S. Lim %A S. A. Zakarya %A N. M. Huang %J Journal of Nanomaterials %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/653890 %X Polypyrrole (PPy) was reinforced with reduced graphene oxide (RGO) and iron oxide to achieve electrochemical stability and enhancement. The ternary nanocomposite film was prepared using a facile one-pot chronoamperometry approach, which is inexpensive and experimentally friendly. The field emission scanning electron microscopy (FESEM) image shows a layered morphology of the ternary nanocomposite film as opposed to the dendritic structure of PPy, suggesting hybridization of the three materials during electrodeposition. X-ray diffraction (XRD) profile shows the presence of Fe2O3 in the ternary nanocomposite. Cyclic voltammetry (CV) analysis illustrates enhanced current for the nanocomposite by twofold and fourfold compared to its binary (PPy/RGO) and individual (PPy) counterparts, respectively. The ternary nanocomposite film exhibited excellent specific capacitance retention even after 200 cycles of charge/discharge. 1. Introduction The increase in affluence in developing countries results in the need of high energy consumption. Therefore, energy sustainability is of significant concern, especially when the depletion of fossil fuels is also factored in. Supercapacitors, also known as ultracapacitors or electrochemical supercapacitors, have several important characteristics, including prolonged life cycle, higher power density than batteries, and higher energy density than conventional capacitors which have driven their use in pulse power and power backup applications. According to the mechanism of charge storage, supercapacitors can be classified as electric double layer capacitors (EDLCs), where charge is stored at the electrode/electrolyte interface, and pseudocapacitors where the charge is stored mainly by Faradaic reactions on the surface of the electrode materials [1]. PPy is an inexpensive and environmentally friendly pseudocapacitor, which has been used due to its excellent properties such as low density, high conductivity, high capacitance value (about 200£¿Fg£¿1), and ease in preparation [2, 3]. However, their poor cycling stability, brittleness, and weak tensile strength impede their real applications [4]. Therefore, PPy has been hybridized with EDLC-based carbon materials to overcome the shortcomings [5]. Graphene is an atomically thick, two-dimensional sheet composed of sp2 carbon atoms arranged in a honeycomb structure. It emerges as an intriguing carbon material with potential for electrochemical energy storage device applications due to its superb characteristics of chemical stability, high electrical conductivity, and large surface area [6, %U http://www.hindawi.com/journals/jnm/2013/653890/