%0 Journal Article %T Mechanism of Water Infiltration and Defiltration through ZSM-5 Zeolite: Heating and Sodium Chloride Concentration Effect %A Yueting Sun %A Jun Xu %A Yibing Li %A Xiaoqing Xu %A Cheng Liu %A Xi Chen %J Journal of Nanomaterials %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/249369 %X Hydrophobic nanoporous material and wetting liquid together comprise a system with promising energy related applications. The mechanism of the interaction between liquid and solid phase is not fully explored. In this paper, based on the quasistatic compression experiments on investigating the mechanical behavior of ZSM-5 zeolite/NaCl solution system, the effects of two key parameters, that is, the pretreatment temperature of ZSM-5 zeolite and NaCl concentration, are parametrically and quantitatively investigated based on Laplace-Washburn equation. Results show that both pretreatment temperature and NaCl concentration raise the infiltration pressure and NaCl can also promote defiltration. The advancing contact and receding contact angle of zeolite-NaCl-air system increase with both pretreatment temperature and NaCl concentration, and the contact angle hysteresis decreases with NaCl concentration. Results may provide fundamental explanation to the nanoconfined liquid behavior and liquid-solid interaction, thus, to smartly control the mechanical properties of the liquid spring and bumpers for energy dissipation function. 1. Introduction Heterogeneous systems containing nanoporous material and liquid may lead to many interesting and promising applications [1], thanks to their highly developed and ultralarge surface [2]. In particular, the energy related applications now receive more and more attention, such as molecular spring [3], shock absorber or damper [4], among others. In essence, the energy absorption/mitigation ability is mainly realized by the basic idea that spreading liquid molecules on the nonwetting nanopores may need a certain value of pressure, that is, the capillary pressure [1]. During the external force driven liquid intrusion into the nanopores, the bulk liquid transforms into molecule group and soon a large surface is developed with large amount of excessive interfacial energy. In the unloading process, the liquid molecules may either completely or partially or not defiltrate at all [4, 5], depending on the wetting properties of the liquid and solid phase. This proposed energy conversion mechanism prepares nanoporous materials to be a promising energy dissipation/conversion system with 1-2 higher order of magnitude than traditional materials [6]. The interaction between liquid and solid, as well as the liquid molecule motion in a nanoconfined environment, dominates the infiltration and defiltration process to influence the energy mitigation related behaviors. Therefore, a quantitative explanation to the liquid molecule infiltration and %U http://www.hindawi.com/journals/jnm/2013/249369/