%0 Journal Article %T Emerging Stem Cell Controls: Nanomaterials and Plasma Effects %A F. F. Borghi %A A. E. Rider %A S. Kumar %A Z. J. Han %A D. Haylock %A K. Ostrikov %J Journal of Nanomaterials %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/329139 %X Stem cells (SC) are among the most promising cell sources for tissue engineering due to their ability to self-renew and differentiate, properties that underpin their clinical application in tissue regeneration. As such, control of SC fate is one of the most crucial issues that needs to be fully understood to realise their tremendous potential in regenerative biology. The use of functionalized nanostructured materials (NM) to control the microscale regulation of SC has offered a number of new features and opportunities for regulating SC. However, fabricating and modifying such NM to induce specific SC response still represent a significant scientific and technological challenge. Due to their versatility, plasmas are particularly attractive for the manufacturing and modification of tailored nanostructured surfaces for stem cell control. In this review, we briefly describe the biological role of SC and the mechanisms by which they are controlled and then highlight the benefits of using a range of nanomaterials to control the fate of SC. We then discuss how plasma nanoscience research can help produce/functionalise these NMs for more effective and specific interaction with SCs. The review concludes with a perspective on the advantages and challenges of research at the intersection between plasma physics, materials science, nanoscience, and SC biology. 1. Introduction Controlling the fate of stem cells (SC) is one of the most crucial issues in regenerative biology and medicine. This versatile type of cell, with promising applications due to their ability to renew their own population and become other types of cells (Figure 1(c)), constitutes the fundamental element of cell therapy. The approach depends upon isolation of SC cells from a tissue as is the case for adult or somatic SC or undifferentiated SC from a culture of pluripotent SC then culture in vitro to generate differentiated mature functional cells for use in regeneration of aged, injured, and diseased tissues. However, cell therapy presents challenges that goes beyond the usual tissue engineering¡ªwhich combine high-performance materials and signaling factors with living cells to restore tissue functions. It involves cells which, when stimulated by specific growth/differentiation factors (e.g., soluble proteins, insoluble attached proteins, and extracellular matrix (ECM) molecules), give rise to a range of heterogeneous cell types (Figure 1(c)). The success of this approach relies on knowing which of these factors affects SC fate and how this interaction occurs. This is a very difficult task and %U http://www.hindawi.com/journals/jnm/2013/329139/