%0 Journal Article %T Evaluation of EPS-PCL Nanofibers as a Nanobiocomposite for Artificial Skin Based on Dermal Fibroblast Culture %A Sang-Myung Jung %A Dae Seung Kim %A Jung Hyeon Ju %A Hwa Sung Shin %J Journal of Nanomaterials %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/619893 %X Several natural bioactive molecules have been used in the development of scaffolds to enhance biocompatibility or biodegradability and macroalgae contain many bioactive compounds that regulate the physiological activities of cells. In this study, extrapolymeric substances (EPS) from brown algae, Undaria pinnatifida, were dispersed in poly-¦Å-caprolactone (PCL) nanofiber, fabricated by electrospinning technique to mimic natural extracellular matrix (ECM), and tested as a scaffold for the production of artificial skin using rat primary fibroblasts. The level of adhesion, viability, and infiltration of cells on the EPS-PCL nanofibers were then assessed. The primary fibroblasts attached well, had good viability, and infiltrated through the nanofiber mat without cytotoxicity. Additionally, fibroblast on EPS-PCL nanofiber overcame the stress derived from high cell density at limited area. These results indicate that EPS-imbedded nanofiber has the potential to be used as scaffolds to develop artificial skin or as wound-healing nanomedicines to regenerate injured skin. 1. Introduction Skin protects the inner organs of an organism from a variety of stresses. Skin is primarily composed of three layers, the epidermis, dermis, and hyperdermis, each of which contains several types of cells. The dermis layer is made almost completely of fibroblasts, which are known to have an effect on keratinocyte proliferation in the epidermis and to be related to some immune responses of skin [1, 2]. When the skin is damaged at about 80£¿¦Ìm, the protected dermis layer can be exposed to air, necessitating regeneration to protect inner tissues. Moreover, in cases in which autoregeneration does not work well and serious scars are left, it is necessary for artificial skin to replace the injured skin for further medical treatments [3, 4]. Artificial skin can be made from skin cells cultured in/on three-dimensional biomaterials. Artificial skin requires a scaffold that is able to offer an environment that enables cells to grow well to establish a cellular community as well as to control their proliferation. Considering that all natural tissues make their complete functions via incorporation with extracellular matrix (ECM), scaffolds should be equivalent to ECM and provide cells with sufficient chances to attach to and spread along scaffolds and activate cellular metabolism normally [5]. To mimic ECM, microenvironment for activating cellular metabolism, nanofibrous scaffold has been intensively applied in tissue engineering. Each nanofiber strand supplies cell attachable point such as %U http://www.hindawi.com/journals/jnm/2013/619893/