%0 Journal Article %T Green Chemistry Based Benign Routes for Nanoparticle Synthesis %A Parth Malik %A Ravi Shankar %A Vibhuti Malik %A Nitin Sharma %A Tapan Kumar Mukherjee %J Journal of Nanoparticles %D 2014 %I Hindawi Publishing Corporation %R 10.1155/2014/302429 %X Green chemistry has been an eye catching area of interest since the past few years. With the problem of energy crisis looming high and its constraint being particularly vulnerable on the developing economies, the need for giving alternative traditional chemistry a serious consideration as well as adequate room for development has received significant boost through the coveted efforts of multidisciplinary and interdisciplinary scientific fields. Nanoscience has been the right field in this dimension as it opens up the door to multiple opportunities through enabling a number of chemical, biochemical, and biophysical transformations in a significantly easier and reliable manner. The use of nanoparticles has made the fields of catalysis, synthesis, and enzyme immobilizations as well as molecular interactions a lot much easier, rapid and easily controllable. This review article sheds light on the popular alternative synthesis routes being employed for the synthesis of nanoparticles, the pivotal being from microbes, plants, and chemical routes via sonication, microwaving, and many others. 1. Introduction Ever since the realization of unconventional properties of matter at nanoscale has assumed significant proportions, there have been numerous attempts to synthesize metallic and metal oxide based nanoparticles through several nonconventional routes. Nanotechnology has just occupied a very special place in the minds of researchers of chemical, biological, and physical backgrounds, which is especially interesting with the quantitative as well as qualitative outputs of nanoparticles. Though not all but silver, gold, zinc oxide, and platinum based nanoparticles have occupied the centre stage till now. The reason being obvious is that they are inert in themselves and can facilitate the surrounding chemical reactions increasingly well. Interestingly, the properties of nanoparticles synthesized using different routes have been found to be sufficiently different, which makes these routes even more powerful. Very easy and economical routes for their synthesis have been discovered. These do not require the technical expertise of well-equipped laboratory professionals. Moreover, these are relatively quicker in terms of output and can be carried out even at grass route levels, ranging from the vegetables we eat, plants we grow, and microbes we admire for their genetic diversities. The reason for the increasing interest in the synthesis of metal and metal oxide based nanoparticles through these routes lies behind their extraordinary abilities to function as catalysts and %U http://www.hindawi.com/journals/jnp/2014/302429/