%0 Journal Article %T Gold Nanoparticles and Nanocomposites in Clinical Diagnostics Using Electrochemical Methods %A Pranjal Chandra %A Jai Singh %A Amardeep Singh %A Ananya Srivastava %A Rajendra N. Goyal %A Yoon Bo Shim %J Journal of Nanoparticles %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/535901 %X Progress and development in clinical diagnostics certainly focus upon the advances in the nanomaterials, particularly gold nanoparticles (AuNPs) that offer promise to solve the biocompatible and sensitive detection systems. This paper focuses on the recent application of AuNPs in clinical diagnosis. Various important methods of AuNPs synthesis and their application in clinical detection of various biomolecules using electrochemical detection methods have been described. AuNPs alone and in various composites are also described based on the various biosensors design recently published for the detection of cancer biomarkers, proteins, bacteria, and cancer cells. The effect of AuNPs type and size in clinical detection has also been briefly illustrated. 1. Introduction The last decade has witnessed an exponential progress of activities in the field of nanoscience and nanotechnology worldwide, motivated both by the anticipation of considerate new science and by the impending trust for applications and financially feasible impacts. The prime action in this field has been in the production and characterization of new materials consisting of particles with dimensions in the order of a few nanometers, purported nanocrystalline materials. These nanosized materials have properties that are often significantly different from their counterparts with the bulk size [1, 2]. Inorganic, organic, and biological nanomaterials may have existed in nature since the evolution of life started on earth [3]. Some evident examples are microorganism and fine grained minerals in rocks [4]. In addition, nanostructures include quantum dots, quantum wires, grains, particles, nanotubes, nanorods, nanofibers, nanofoams, nanocrystals, nanoprecision self-assemblies, and thin films of metals, intermetallics, semiconductors, ferroelectrics, dielectrics, composites, alloys, blends, organics, organominerals, biomaterials, biomolecules, oligomers, polymers, functional structures and devices [5¨C8]. These novel materials made up of nanosized grains or building blocks offer unique and entirely different electrical, optical, mechanical, and magnetic properties compared to conventional micro- or millimeter-size materials owing to their distinctive size, shape, surface chemistry, and topology [7, 8]. Nanostructured materials and their base technologies have opened new exciting possibilities for future applications in medical, aerospace, catalysts, batteries, nonvolatile memories, sensors, insulators, color imaging, printing, flat panel displays, waveguides, modulators, computer chips, magneto-optical %U http://www.hindawi.com/journals/jnp/2013/535901/