%0 Journal Article %T Simulation of Formation Damage after Long-Term Water Flooding %A Liu He %A Gao Yang %A Li Guoxin %A Li Yiliang %J Journal of Petroleum Engineering %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/479827 %X Water flooding is a commonly used technology for enhancing oil recovery. Its main mechanism is to maintain higher pressure to sweep oil towards production wells. However, the strong water flooding will cause higher compression pressure around the injection wellbore. This high pressure in the reservoir causes stress redistribution and higher stress near the wellbore which induces material damage and permeability change. We developed a fluid-solid coupling finite element model to simulate and quantitatively analyze the pressure evolution in the reservoir as well as damage and permeability change in the formation during long-term water flooding process. The obtained results offer theoretical understanding of the benefits (pore pressure increase in the simulation domain), rock damage, permeability change of long-term water flooding, and the insights of how to detect and prevent wellbore failure and collapse due to water flooding. 1. Introduction Water flooding is a worldwide used technology for enhancing oil recovery. Its main mechanism is to maintain higher pressure to sweep oil towards production wells. The efficiency and key considerations about the technology have been studied [1, 2]. However the injected water will cause the pressure around the injection wellbore to be much higher than that farther away from the well [3]. This high pressure in the reservoir causes stress redistribution and higher stress near the wellbore which induces material damage and permeability change. Experimental results show that dramatic increase of permeability occurs after rock damage [4¨C6]. Different mechanical models of describing the rock damage and permeability change have been established. Rutqvist et al. [7] proposed that the permeability is an exponential function of the equivalent strain based on the field measurement data of tunnel excavation problem. According to the uniaxial compression tests of rock material, Tang et al. [5] found that permeability jumps up steeply accompanying rock damage. Other damage models can be consulted in the literature such as Loland damage model, Mazars damage model, and Sidoroff damage model [8]. In the present paper, an axial symmetrical fluid-solid coupling finite element model is established to simulate the water flooding process. The pressure evolution in the reservoir as well as damage and permeability change in the formation during long-term water flooding procedure is studied. The numerical results demonstrate that after 5-year water flooding, the maximum pore pressure is increased remarkably. The formation damages gradually %U http://www.hindawi.com/journals/jpe/2013/479827/