%0 Journal Article %T Review of Sand Production Prediction Models %A Hossein Rahmati %A Mahshid Jafarpour %A Saman Azadbakht %A Alireza Nouri %A Hans Vaziri %A Dave Chan %A Yuxing Xiao %J Journal of Petroleum Engineering %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/864981 %X Sand production in oil and gas wells can occur if fluid flow exceeds a certain threshold governed by factors such as consistency of the reservoir rock, stress state and the type of completion used around the well. The amount of solids can be less than a few grams per cubic meter of reservoir fluid, posing only minor problems, or a substantial amount over a short period of time, resulting in erosion and in some cases filling and blocking of the wellbore. This paper provides a review of selected approaches and models that have been developed for sanding prediction. Most of these models are based on the continuum assumption, while a few have recently been developed based on discrete element model. Some models are only capable of assessing the conditions that lead to the onset of sanding, while others are capable of making volumetric predictions. Some models use analytical formulae, particularly those for estimating the onset of sanding while others use numerical models, particularly in calculating sanding rate. Although major improvements have been achieved in the past decade, sanding tools are still unable to predict the sand mass and the rate of sanding for all field problems in a reliable form. 1. Introduction A significant proportion of the world oil and gas reserves is contained in weakly consolidated sandstone reservoirs and hence is prone to sand production. Material degradation is a key process leading to sanding. Drilling operations, cyclic effects of shut-in and start-up, operational conditions, reservoir pressure depletion, and strength-weakening effect of water may gradually lead to sandstone degradation around the perforations and boreholes. High pressure gradient due to fluid flow also facilitates the detachment of sand particles. In addition, fluid flow is responsible for the transport and production of cohesionless sand particles or detached sand clumps to the wellbore. Sand production is the cause of many problems in the oil industry and it affects the completion adversely. These problems include, but are not limited to, plugging the perforations or production liner, wellbore instability, failure of sand control completions [1], collapse of some sections of a horizontal well in unconsolidated formations, environmental effects, additional cost of remedial and clean-up operations, and pipelines and surface facilities erosion, in case the sand gets out of the well. The mechanical prevention of sanding is costly and leads to low productivity/injectivity. Therefore, there is always a cost benefit if sand management and modeling is implemented %U http://www.hindawi.com/journals/jpe/2013/864981/