%0 Journal Article %T AAL Middleware Infrastructure for Green Bed Activity Monitoring %A Filippo Palumbo %A Paolo Barsocchi %A Francesco Furfari %A Erina Ferro %J Journal of Sensors %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/510126 %X This paper describes a service-oriented middleware platform for ambient assisted living and its use in two different bed activity services: bedsore prevention and sleeping monitoring. A detailed description of the middleware platform, its elements and interfaces, as well as a service that is able to classify some typical user's positions in the bed is presented. Wireless sensor networks are supposed to be widely deployed in indoor settings and on people's bodies in tomorrow's pervasive computing environments. The key idea of this work is to leverage their presence by collecting the received signal strength measured among fixed general-purpose wireless sensor devices, deployed in the environment, and wearable ones. The RSS measurements are used to classify a set of user's positions in the bed, monitoring the activities of the user, and thus supporting the bedsores and the sleep monitoring issues. Moreover, the proposed services are able to decrease the energy consumption by exploiting the context information coming from the proposed middleware. 1. Introduction The last few years have seen research development in the field of ambient assisted living (AAL), which can be defined as concepts, products, and services supporting a healthy and independent life of elderly citizens with intelligent systems that assist them in carrying out their daily activities. AAL encompasses a wide range of applications ranging from tele-monitoring of vital parameters for patients with chronic diseases to scenarios involving home automation and domotics, the recognition of adverse events such as a fall causing a fracture, or specific assistance systems for people with hearing or vision deficits. These researches were focused on network infrastructures, distributed software architectures as well as context information models to support pervasive computing applications in smart environments. The AAL environments leveraging smart devices have the ability to support user¡¯s daily life activities through efficient context evaluation systems that support activities for different users¡¯ requirements. At the same time, application adaptation for these activities is also required in response to changes from the environment. In this regard, the interconnections among components sharing the same context are also relevant. A crucial role in this scenario is played by the middleware infrastructure as it provides the central connection point that is shared by all the components according to the needed information exchanges. A middleware infrastructure provides a set of basic services for the %U http://www.hindawi.com/journals/js/2013/510126/