%0 Journal Article %T Equilibrium Molecular Interactions in Pure Gases %A Boris I. Sedunov %J Journal of Thermodynamics %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/859047 %X The equilibrium molecular interactions in pure real gases are investigated based on the chemical thermodynamics principles. The parallels between clusters in real gases and chemical compounds in equilibrium media have been used to improve understanding of the real gas structure. A new approach to the equilibrium constants for the cluster fractions and new methods to compute them and their significant parameters from the experimental thermophysical data are developed. These methods have been applied to some real gases, such as Argon and Water vapors and gaseous Alkanes. It is shown that the four-particle clusters make a noticeable contribution in the thermophysical properties of the equilibrium Water vapor. It is shown also that the effective bond energy for dimers in Alkanes linearly grows with the number of carbon atoms in the molecule. 1. Introduction Modern technologies benefit from the utilization of extra pure and highly uniform materials and substances and precise knowledge of their thermophysical properties. For computer-aided design and control of technological processes, precise models of thermophysical properties and equations of state for pure gases are very important because the real gases are widely used both as initial and intermediate materials in modern technologies. The models for pure gases can be used to build more complex models for mixtures of different gases. This work has a goal to show no obvious relations between equilibrium molecular interaction parameters in pure real gases and to find useful expressions to predict equilibrium properties of pure gases in changing external conditions. The work is based on a phenomenological approach that, nevertheless, provides a vision of the real gas structure on a microscopic level. The paper tries to answer the following questions, arising in courses of molecular and chemical physics.(i)What are the equilibrium constants and bond energies for real gas clusters considered as the low bond energy analogues of chemical compounds?(ii)How to define the bond energies for clusters that in contrast to a wide separation of quantum levels of compounds have a dense spacing of multiple energetic levels?(iii)How to build the bridge between the virial equations of state based on variables that are sums of partial quantities for cluster fractions and the chemical equilibrium law, where arguments for concentrations of chemical compounds are the partial concentrations of reacting components [1]?(iv)How to transform the Sackur-Tetrode equation for entropy [2, 3] of ideal atomic gases for real gases with %U http://www.hindawi.com/journals/jther/2012/859047/