%0 Journal Article %T Stagnation Point Flow of a Nanofluid toward an Exponentially Stretching Sheet with Nonuniform Heat Generation/Absorption %A A. Malvandi %A F. Hedayati %A G. Domairry %J Journal of Thermodynamics %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/764827 %X This paper deals with the steady two-dimensional stagnation point flow of nanofluid toward an exponentially stretching sheet with nonuniform heat generation/absorption. The employed model for nanofluid includes two-component four-equation nonhomogeneous equilibrium model that incorporates the effects of Brownian diffusion and thermophoresis simultaneously. The basic partial boundary layer equations have been reduced to a two-point boundary value problem via similarity variables and solved analytically via HAM. Effects of governing parameters such as heat generation/absorption ¦Ë, stretching parameter ¦Å, thermophoresis , Lewis number Le, Brownian motion , and Prandtl number Pr on heat transfer and concentration rates are investigated. The obtained results indicate that in contrast with heat transfer rate, concentration rate is very sensitive to the abovementioned parameters. Also, in the case of heat generation , despite concentration rate, heat transfer rate decreases. Moreover, increasing in stretching parameter leads to a gentle rise in both heat transfer and concentration rates. 1. Introduction For years, many researchers have paid much attention to viscous fluid motion near the stagnation region of a solid body, where ¡°body¡± corresponds to either fixed or moving surfaces in a fluid. This multidisciplinary flow has frequent applications in high speed flows, thrust bearings, and thermal oil recovery. Hiemenz [1] developed the first investigation in this field. He applied similarity transformation to collapse two-dimensional Navier-Stokes equations to a nonlinear ordinary differential one and then presented its exact solution. Extension of this study was carried out with a similarity solution by Homann [2] to the case of axisymmetric three-dimensional stagnation point flow. After these original studies, many researchers have put their attention on this subject [3¨C9]. Besides stagnation point flow, stretching surfaces have a wide range of applications in engineering and several technical purposes particularly in metallurgy and polymer industry, for instance, gradual cooling of continuous stretched metal or plastic strips which have multiple applications in mass production. Crane [10] was the first to present a similarity solution in the closed analytical form for steady two-dimensional incompressible boundary layer flow caused by the stretching plate whose velocity varies linearly with the distance from a fixed point on the sheet. The combination of stretching surface and stagnation point flow was analyzed by Yao et al. [11]. Different types fluids such %U http://www.hindawi.com/journals/jther/2013/764827/