%0 Journal Article %T On the Agaciro Equation via the Scope of Green Function %A Abdon Atangana %A Innocent Rusagara %J Mathematical Problems in Engineering %D 2014 %I Hindawi Publishing Corporation %R 10.1155/2014/201796 %X We have undertaken an investigation of a kind of third-order equation called Agaciro equation within the folder of both integer and fractional order derivative. In the way of deriving the general exact solution of this equation, we employed the philosophy of the Green function together with some integral transform operators and special functions including but not limited to the Laplace, Fourier, and Mellin transform. We presented some examples of exact solution of this class of third-order equations for integer and fractional order derivative. It is important to point out that the value of Agaciro equation can be extended to describe assorted phenomenon in sciences. 1. Introduction An important method used in the field of partial and ordinary linear is Green function method. It is important to remember that the construction of the Green function is an art and difficult exercise because, in the way of construction, one must first make sure of the existence and the uniqueness of this function, which is a whole topic in mathematics. Once the uniqueness and the existence are insured, one needs to have a knowledge of methods of solving either partial differential equations or ordinary differential equations, again this is a whole topic on its own in mathematics. Within the scope of fractional calculus, one further needs a clear knowledge of special function and other useful integral transform operators including but not limited to Laplace transform, Fourier transform, and Mellin transform. This method was recently extended to the scope of partial and ordinary differential equations with noninteger order derivative [1, 2]. It should be mentioned that the finding of the Green function in the folder of the fractional calculus is very difficult because this involves at the same time some special functions and also some integral transform, for instance the Mellin, the Laplace, and the Fourier transform operators. It is perhaps important to present a brief history regarding the Green function method. In mathematical sciences and related disciplines, a Green function is the desired answer of an inhomogeneous differential equation defined on a domain, with particular preliminary conditions or boundary conditions. By means of the superposition theory, the convolution of a Green function with a subjective function on that domain is the solution to the inhomogeneous differential equation for the unknown function . These classes of functions are named after the British mathematician George Green, who first developed the concept in the year 1830 [3, 4]. In the %U http://www.hindawi.com/journals/mpe/2014/201796/