%0 Journal Article %T Virtual Visual Effect of Hospital Waiting Room on Pain Modulation in Healthy Subjects and Patients with Chronic Migraine %A Marina de Tommaso %A Katia Ricci %A Luigi Laneve %A Nicola Savino %A Vincenzo Antonaci %A Paolo Livrea %J Pain Research and Treatment %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/515730 %X Environmental context has an important impact on health and well being. We aimed to test the effects of a visual distraction induced by classical hospital waiting room (RH) versus an ideal room with a sea view (IH), both represented in virtual reality (VR), on subjective sensation and cortical responses induced by painful laser stimuli (LEPs) in healthy volunteers and patients with chronic migraine (CM). Sixteen CM and 16 controls underwent 62 channels LEPs from the right hand, during a fully immersive VR experience, where two types of waiting rooms were simulated. The RH simulated a classical hospital waiting room while the IH represented a room with sea viewing. CM patients showed a reduction of laser pain rating and vertex LEPs during the IH vision. The sLORETA analysis confirmed that in CM patients the two VR simulations induced a different modulation of bilateral parietal cortical areas (precuneus and superior parietal lobe), and superior frontal and cingulate girus, in respect to controls. The architectural context may interfere with pain perception, depending upon the status of subject. Many variables may change patients¡¯ outcome and support the use of VR technology to test the best conditions for their management. 1. Introduction Pain is a complex function of the human brain, involving attention and emotions [1, 2]. The process of distraction appears to involve competition for attention between a highly salient sensation (pain) and consciously directed focus on some other information processing activity. In fact, the neuronal network, devoted to painful inputs elaboration, is not nociceptive specific, similar activations being produced by relevant tactile, auditory, and visual stimuli [3, 4]. The multisensory nature of this network makes it a likely candidate for cross-modal modulation of pain [5]. In this sense, growing interest exists toward virtual reality (VR) technology, which is based on integrating multimodal (visual, auditory, tactile, and olfactory) sensory distractions [6]. Virtual reality (VR) is as effective in inducing emotional responses as reality and its application is extremely valuable in exposure treatment [7]. In fact, in virtual environments, the patients experience similar physiological symptoms as they do in real life situations, so virtual models can be employed to test how the ambient of real life could possibly interfere with pain modulation. Presently there is a growing body of evidence on the impact of the environment on health and well-being, and some aspects of hospital rooms have been studied as ¡°positive %U http://www.hindawi.com/journals/prt/2013/515730/