%0 Journal Article %T Responsiveness of Various Exercise-Testing Protocols to Therapeutic Interventions in COPD %A Benoit Borel %A Steeve Provencher %A Didier Saey %A Fran£żois Maltais %J Pulmonary Medicine %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/410748 %X Exercise intolerance is a key element in the pathophysiology and course of Chronic Obstructive Pulmonary Disease (COPD). As such, evaluating exercise tolerance has become an important part of the management of COPD. A wide variety of exercise-testing protocols is currently available, each protocol having its own strengths and weaknesses relative to their discriminative, methodological, and evaluative characteristics. This paper aims to review the responsiveness of several exercise-testing protocols used to evaluate the efficacy of pharmacological and nonpharmacological interventions to improve exercise tolerance in COPD. This will be done taking into account the minimally important difference, an important concept in the interpretation of the findings about responsiveness of exercise testing protocols. Among the currently available exercise-testing protocols (incremental, constant work rate, or self-paced), constant work rate exercise tests (cycle endurance test and endurance shuttle walking test) emerge as the most responsive ones for detecting and quantifying changes in exercise capacity after an intervention in COPD. 1. Introduction Chronic airflow limitation is the defining physiological feature of Chronic Obstructive Pulmonary Disease (COPD) whose main symptom is dyspnea. Exercise intolerance is another major consequence of COPD, leading to a sedentary life style and poor quality of life [1, 2]. In fact, exercise intolerance is central to the progression of the downward spiral of COPD [3]. Considering the key role of exercise intolerance in the pathophysiology and course of COPD, the evaluation of exercise tolerance should now be included in the assessment of this disease [4], especially for the evaluation of the response to pharmacological and nonpharmacological interventions [5¨C7]. Also, the heterogeneity in the mechanisms of exercise intolerance in COPD highlights the importance of comprehensive exercise testing, assessing all systems potentially involved [8]. Exercise testing is currently included in the follow-up of chronic diseases like COPD. Exercise testing can be used to document the severity of pulmonary disease, the functional impact of altered respiratory function and to better understand the physiopathological mechanisms involved in exercise intolerance; this refers to the discriminative characteristic of the test. Exercise testing can also be used to quantify the impact of an intervention to improve exercise tolerance [9, 10] or dyspnea [11, 12] and in the preoperative and pre rehabilitation assessments of patients, corresponding to %U http://www.hindawi.com/journals/pm/2013/410748/