%0 Journal Article %T Hox Targets and Cellular Functions %A Ernesto S¨˘nchez-Herrero %J Scientifica %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/738257 %X Hox genes are a group of genes that specify structures along the anteroposterior axis in bilaterians. Although in many cases they do so by modifying a homologous structure with a different (or no) Hox input, there are also examples of Hox genes constructing new organs with no homology in other regions of the body. Hox genes determine structures though the regulation of targets implementing cellular functions and by coordinating cell behavior. The genetic organization to construct or modify a certain organ involves both a genetic cascade through intermediate transcription factors and a direct regulation of targets carrying out cellular functions. In this review I discuss new data from genome-wide techniques, as well as previous genetic and developmental information, to describe some examples of Hox regulation of different cell functions. I also discuss the organization of genetic cascades leading to the development of new organs, mainly using Drosophila melanogaster as the model to analyze Hox function. 1. Introduction The amazing variety of animal forms has always attracted the curiosity of scientists and spurred investigations into the underlying cause of such diversity. Comparison of different species, or of serially similar parts within the same animal, led to the concept of homology and to the idea that a basic pattern of development could be variously modified to obtain different structures. Part of the explanation for such diversity, particularly that of serially homologous organs, relies on the activity of Hox genes. These genes have received other names in the past: selector genes or master genes, indicating that they direct a particular developmental pathway, or homeotic genes, because mutations in them frequently cause transformation of one part of the body into another, that is, homeosis. However, these names include genes that do not meet all the characteristics that define Hox genes, as explained below. Hox genes are a group of genes conserved in evolution that determines the development of different structures along the anteroposterior (A/P) axis of bilaterians [1, 2]. They are usually clustered in gene complexes, although conservation of clustering in evolution is more evident in chordates [3¨C5]. These genes have been studied in many species, but with more detail in two of them, Drosophila melanogaster and mouse. In Drosophila melanogaster, Hox genes are grouped in two complexes, the bithorax complex (BX-C), comprising the Hox genes Ultrabithorax (Ubx), abdominal-A (abd-A), and Abdominal-B (Abd-B) [3, 6¨C8] and the Antennapedia complex %U http://www.hindawi.com/journals/scientifica/2013/738257/