%0 Journal Article %T The Molecular Epidemiology of Chronic Aflatoxin Driven Impaired Child Growth %A Paul Craig Turner %J Scientifica %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/152879 %X Aflatoxins are toxic secondary fungal metabolites that contaminate dietary staples in tropical regions; chronic high levels of exposure are common for many of the poorest populations. Observations in animals indicate that growth and/or food utilization are adversely affected by aflatoxins. This review highlights the development of validated exposure biomarkers and their use here to assess the role of aflatoxins in early life growth retardation. Aflatoxin exposure occurs in utero and continues in early infancy as weaning foods are introduced. Using aflatoxin-albumin exposure biomarkers, five major studies clearly demonstrate strong dose response relationships between exposure in utero and/or early infancy and growth retardation, identified by reduced birth weight and/or low HAZ and WAZ scores. The epidemiological studies include cross-sectional and longitudinal surveys, though aflatoxin reduction intervention studies are now required to further support these data and guide sustainable options to reduce the burden of exposure. The use of aflatoxin exposure biomarkers was essential in understanding the observational data reviewed and will likely be a critical monitor of the effectiveness of interventions to restrict aflatoxin exposure. Given that an estimated 4.5 billion individuals live in regions at risk of dietary contamination the public health concern cannot be over stated. 1. Introduction Fungal toxins, also known as mycotoxins, are frequent contaminants of dietary staples for much of the world. These potent dietary toxins are estimated to contaminate 25% of the worldĄŻs cereal crops [1] making exposure frequent among many populations. Among the hundreds of mycotoxins identified, those of major public health concern include aflatoxins produced from Aspergillus fungi and both the fumonisins and the trichothecenes (e.g., deoxynivalenol (DON), nivalenol, and T2-toxin) from Fusarium fungi. Aflatoxins and fumonisins tend to be more frequent contaminants of crops in hot and humid climates as in Central America, tropical Asia, and sub-Saharan Africa where staple foods such as maize and groundnuts (peanuts) are often contaminated. Trichothecenes tend to occur more frequently in more temperate regions including parts of Asia, Europe, and North and South America [1]. This review will focus on the toxicology of the aflatoxins, the need for the development of exposure biomarkers to improve our understanding of the etiology of aflatoxin driven chronic diseases, and specifically in this review the use of aflatoxin exposure biomarkers in revealing aflatoxins role in %U http://www.hindawi.com/journals/scientifica/2013/152879/