%0 Journal Article %T Cellular Transplantation Alters the Disease Progression in Becker¡¯s Muscular Dystrophy %A Alok Sharma %A Amruta Paranjape %A Hemangi Sane %A Khushboo Bhagawanani %A Nandini Gokulchandran %A Prerna Badhe %J Case Reports in Transplantation %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/909328 %X Becker¡¯s Muscular Dystrophy (BMD) is a dystrophinopathy manifested as progressive muscle degeneration. Autologous Bone Marrow Mononuclear Cells (BMMNCs) have shown some myogenic potential. The paracrine effects of the BMMNCs reduce the inflammation and are thought to reduce muscle degeneration. We treated a 39 year old dental surgeon suffering from BMD. Muscle strength was reduced when measured using modified Medical Research Council¡¯s Manual Muscle Testing (mMRC-MMT). Static sitting balance was poor. He was wheelchair dependent for ambulation and moderately independent in Activities of Daily Living (ADL). Functional Independence Measure (FIM) score was 93. Musculoskeletal Magnetic Resonance Imaging (MRI-MSK) showed moderate fatty infiltration in the muscles. Three cellular transplantations were carried out. Clinical assessment and the investigations were repeated. Progressive increase in the muscle strength was noted. Ambulation was independent using push-knee splints and minimal assistance when weary. Static and dynamic balance in sitting and standing improved. FIM score increased from 93 to 105. There was no increase in the degree of fatty infiltration, as seen on the MRI-MSK. The case study provides evidence for the putative benefits of cellular therapy in altering the disease progression in BMD. It also suggests augmented clinical benefits of combination of cellular therapy and rehabilitation. 1. Introduction Becker¡¯s Muscular Dystrophy (BMD) is one of the dystrophinopathies caused due to in-frame deletions of the exons of dystrophin gene leading to incomplete translation of its protein product, Dystrophin [1]. This incomplete translation leads to functionally incompetent protein [2]. Dystrophin is essential to maintain the structural integrity of the muscle fibers against the mechanical and contractile stresses [3]. In absence of dystrophin, there is increased breakdown of muscle fibers and increased phagocytosis. In the early phase of the disease, this is compensated by regeneration of new muscle fibers from quiescent satellite cells. However, limited numbers of satellite cells leave the rampant muscle necrosis uncompensated as the disease progresses [4]. Clinically, this is manifested as progressive muscle weakness and wasting leading to loss of functionality. There is a vast variation in the clinical manifestation of this disease [5]. BMD leads to severe loss of function and disability in most part of the life followed by premature death [6]. Management of BMD consists of use of corticosteroids to reduce the inflammatory breakdown of the muscle %U http://www.hindawi.com/journals/crit/2013/909328/