%0 Journal Article %T Condition Based Maintenance Optimization of an Aircraft Assembly Process Considering Multiple Objectives %A J. Li %A T. Sreenuch %A A. Tsourdos %J ISRN Aerospace Engineering %D 2014 %R 10.1155/2014/204546 %X The Commercial Aircraft Cooperation of China (COMAC) ARJ21 fuselage¡¯s final assembly process is used as a case study. The focus of this paper is on the condition based maintenance regime for the (semi-) automatic assembly machines and how they impact the throughput of the fuselage assembly process. The fuselage assembly process is modeled and analyzed by using agent based simulation in this paper. The agent approach allows complex process interactions of assembly, equipment, and maintenance to be captured and empirically studied. In this paper, the built network is modeled as the sequence of activities in each stage, which are parameterized by activity lead time and equipment used. A scatter search is used to find multiobjective optimal solutions for the CBM regime, where the maintenance related cost and production rate are the optimization objectives. In this paper, in order to ease computation intensity caused by running multiple simulations during the optimization and to simplify a multiobjective formulation, multiple Min-Max weightings are used to trace Pareto front. The empirical analysis reviews the trade-offs between the production rate and maintenance cost and how sensitive the design solution is to the uncertainties. 1. Introduction Nowadays, aircraft manufacturers are operating in a global competitive environment. Increasing production rate and reducing costs are the key drivers in aircraft manufacturing. In order to meet the required production rate while meeting high quality requirements, (semi-) automatic assembly machines (e.g., Flexible Drilling Head [1], GRAWDE (Gear Rib Automated Wing Drilling Equipment), and HAWED (Horizontal Automated Wing Drilling Equipment) [2]) are increasingly being used in the aircraft assembly line. These machines can deliver significant productivity gains on the shop floor by reducing the manual multistep processes and overcoming the restricted worker access [3]. This in effect has shifted the production throughput to be now very much dependent on the operational availability of these (semi-) automatic machines [4]. Consequently, machine breakdowns and maintenance are therefore a major cause of bottlenecks in the assembly line. How to manage these machines in an efficient and cost-effective way to maximize the overall product rate is still a key challenge to the aircraft manufacturers [2]. Maintenance involves fixing when equipment becomes out of order (corrective maintenance) and also includes performing routine actions which will keep the equipment working in order or prevent failures from arising (i.e., %U http://www.hindawi.com/journals/isrn.aerospace.engineering/2014/204546/