%0 Journal Article %T Clinical and Radiographic Comparison of Oxidized Zirconium and Cobalt Chrome Femoral Components of a Single Design Primary Total Knee Arthroplasty: Is the Cost Difference Justified Based on Patient Outcomes? %A Geevan George %A Nicole Durig %A Stewart Lee %A Stephanie Tanner %A Rebecca Snider %A Thomas Pace %J ISRN Biomaterials %D 2013 %R 10.5402/2013/174298 %X A review of 120 consecutive total knee arthroplasty patient records was made comparing oxidized zirconium with traditional cobalt chrome alloy femoral components and assessing the clinical and radiographic outcomes of each. The direct hospital implant cost for each of these implant systems was obtained and assessed in the context of any difference in patient Knee Society Scores, knee flexion, pain, probability of metal allergy, and radiographic signs of pending implant failures. At an average of 5.6-year followup (1¨C11-year range in both groups), the data showed no clinical or radiological variance between the two groups, while the hospital direct implant cost with the oxidized zirconium femoral component was $1900 higher than the cobalt chrome implants. Considering the cost difference between the implants and the lack of a difference in outcomes at an average of 5-6 years of followup, this paper brings into question the ability to justify the use of oxidized zirconium femoral components based solely on improved patient outcomes. 1. Introduction The volume of joint arthroplasty procedures performed each year has steadily increased over time, with primary total knee arthroplasty (TKA) projected to increase by 673%, from 450,000 in 2005 to 3.48 million procedures in 2030 [1]. With the increased population of active and aging baby-boomers qualifying for Medicare and the changes to the health care system implemented by the Affordable Care Act, providers and policy makers must make decisions on procedures and products that are both clinically effective and cost efficient. Advances in TKA technology have introduced new materials aimed at providing quicker recovery, hypoallergenic properties, and improved prosthesis survivorship. Oxidized zirconium is a relatively new material consisting of a zirconium alloy (Zr-2.5Nb) core that has been oxidized to produce a zirconia (ZrO2) ceramic-like surface. Knee simulator studies have demonstrated the proposed benefits of oxidized zirconium, which include less nickel exposure and improved wear properties, such as increased hardness, decreased surface roughness, and increased resistance to abrasion, adhesion, and delamination compared to cobalt-chromium-molybdenum (CoCrMo) [2¨C9]. Several in vivo studies have been published concerning the clinical effectiveness and wear performance of oxidized zirconium femoral components [7, 10, 11]; however, many have reported similar clinical outcomes for the oxidized zirconium in comparison to the traditional CoCrMo alloy [12¨C15]. Since oxidized zirconium requires a more complex %U http://www.hindawi.com/journals/isrn.biomaterials/2013/174298/