%0 Journal Article %T Radiation and Chemical Reaction Effects on Unsteady Double Diffusive Convective Flow past an Oscillating Surface with Constant Heat Flux %A Arpita Jain %J ISRN Chemical Engineering %D 2013 %R 10.1155/2013/846826 %X This paper presents an analysis of combined heat and mass transfer flow past an oscillating vertical plate under the action of radiation effects and chemical reaction when heat is supplied to the plate at constant rate. The governing equations are solved in closed form by Laplace-transform technique. The results are obtained for temperature, concentration, velocity, skin friction, Nusselt number, and Sherwood number. The effects of various parameters on flow variables are illustrated graphically, and the physical aspects of the problem are discussed. 1. Introduction Free convection arises in the fluid when temperature changes cause density variation leading to buoyancy forces acting on the fluid elements. The most common example of free convection is the atmospheric flow which is driven by temperature differences. Natural convection has been analyzed extensively by many investigators. Some of them are Revankar [1] Li et al. [2]. Sometimes along with the free convection currents caused by difference in temperature the flow is also affected by the differences in concentration or material constitution. There are many situations where convection heat transfer phenomena are accompanied by mass transfer also. When mass transfer takes place in a fluid at rest, the mass is transferred purely by molecular diffusion resulting from concentration gradients. For low concentration of the mass in the fluid and low mass transfer rates, the convective heat and mass transfer processes are similar in nature. A number of investigations have already been carried out with combined heat and mass transfer under the assumption of different physical situations. The illustrative examples of mass transfer can be found in the book of Cussler [3]. Combined heat and mass transfer flow past a surface are analyzed by Chaudhary and Arpita. [4], Muthucumaraswamy et al. [5, 6] and Rajput and Kumar [7] with different physical conditions. Juncu [8] pioneered unsteady heat and mass transfer flow past a surface by numerical method. Combined heat and mass transfer problems with chemical reaction are of importance in many processes and have, therefore, received a considerable amount of attention in recent years. Chemical reaction can be codified as either homogeneous or heterogeneous processes. A homogeneous reaction is one that occurs uniformly through a given phase. In contrast, a heterogeneous reaction takes place in a restricted region or within the boundary of a phase. A reaction is said to be first order if the rate of reaction is directly proportional to the concentration itself which %U http://www.hindawi.com/journals/isrn.chemical.engineering/2013/846826/