%0 Journal Article %T Properties of Concrete at Elevated Temperatures %A Venkatesh Kodur %J ISRN Civil Engineering %D 2014 %R 10.1155/2014/468510 %X Fire response of concrete structural members is dependent on the thermal, mechanical, and deformation properties of concrete. These properties vary significantly with temperature and also depend on the composition and characteristics of concrete batch mix as well as heating rate and other environmental conditions. In this chapter, the key characteristics of concrete are outlined. The various properties that influence fire resistance performance, together with the role of these properties on fire resistance, are discussed. The variation of thermal, mechanical, deformation, and spalling properties with temperature for different types of concrete are presented. 1. Introduction Concrete is widely used as a primary structural material in construction due to numerous advantages, such as strength, durability, ease of fabrication, and noncombustibility properties, it possesses over other construction materials. Concrete structural members when used in buildings have to satisfy appropriate fire safety requirements specified in building codes [1¨C4]. This is because fire represents one of the most severe environmental conditions to which structures may be subjected; therefore, provision of appropriate fire safety measures for structural members is an important aspect of building design. Fire safety measures to structural members are measured in terms of fire resistance which is the duration during which a structural member exhibits resistance with respect to structural integrity, stability, and temperature transmission [5, 6]. Concrete generally provides the best fire resistance properties of any building material [7]. This excellent fire resistance is due to concrete¡¯s constituent materials (i.e., cement and aggregates) which, when chemically combined, form a material that is essentially inert and has low thermal conductivity, high heat capacity, and slower strength degradation with temperature. It is this slow rate of heat transfer and strength loss that enables concrete to act as an effective fire shield not only between adjacent spaces but also to protect itself from fire damage. The behaviour of a concrete structural member exposed to fire is dependent, in part, on thermal, mechanical, and deformation properties of concrete of which the member is composed. Similar to other materials the thermophysical, mechanical, and deformation properties of concrete change substantially within the temperature range associated with building fires. These properties vary as a function of temperature and depend on the composition and characteristics of concrete. The strength %U http://www.hindawi.com/journals/isrn.civil.engineering/2014/468510/