%0 Journal Article %T Optimization of Antioxidant Potential of Penicillium granulatum Bainier by Statistical Approaches %A Priyanka Chandra %A Daljit Singh Arora %J ISRN Microbiology %D 2012 %R 10.5402/2012/452024 %X A three-step optimization strategy which includes one-factor-at-a-time classical method and different statistical approaches (Plackett-Burman design and response surface methodology) that were applied to optimize the antioxidant potential of Penicillium granulatum. Antioxidant activity was assayed by different procedures and compared with total phenolic content. Primarily, different carbon and nitrogen sources were screened by classical methods, which revealed sucrose and NaNO3 to be the most suitable. In second step, Plackett-Burman design also supported sucrose and NaNO3 to be the most significant. In third step, response surface analysis showed 4.5% sucrose, 0.1% NaNO3, and incubation temperature of 25¡ãC to be the optimal conditions. Under these conditions, the antioxidant potential assayed through different procedures was 78.2%, 70.1%, and 78.9% scavenging effect for DPPH radical, ferrous ion, and nitric oxide ion, respectively. The reducing power showed an absorbance of 1.6 with 68.5% activity for FRAP assay. 1. Introduction Antioxidants are the compounds that scavenge or neutralize free radicals. These are produced constantly in human body during normal physiological processes and are responsible for various pathological process like aging, cardiovascular diseases, diabetes, cancer, Alzheimer¡¯s disease, neurodegenerative disorders, atherosclerosis, cataracts, and inflammation [1]. Filamentous fungi are historically important sources of pharmacologically relevant secondary metabolites, and this group continues to provide new structures with novel biological activities [2]. The discovery of pharmaceutically significant novel product through screening of microbial secondary metabolites is an attraction in the pharmaceutical and biotechnological industry and is also becoming increasingly beneficial. There is widespread acceptance that fungi are virtually unlimited source of novel structures with many potential therapeutic applications including antibacterial, anticancer, anti-inflammatory, immunostimulatory, and antioxidant [3]. Recently, fungi have emerged as an important source of antioxidant compounds [4, 5]. Phenolic compounds are considered to be the main secondary metabolites in plants, mushrooms, and fungi responsible for their antioxidant activity [6¨C8]. Physiochemical and nutritional conditions greatly influence the growth as well as the activities of the microorganisms. Hence, optimization of such parameters is an important step for the enhancement of activity. Optimization is a tedious process due to involvement of multivariable parameters. %U http://www.hindawi.com/journals/isrn.microbiology/2012/452024/