%0 Journal Article %T Function and Evolution of the Sox Multienzyme Complex in the Marine Gammaproteobacterium Congregibacter litoralis %A Stefan Spring %J ISRN Microbiology %D 2014 %R 10.1155/2014/597418 %X Core sets of sox genes were detected in several genome sequenced members of the environmental important OM60/NOR5 clade of marine gammaproteobacteria. However, emendation of media with thiosulfate did not result in stimulation of growth in two of these strains and cultures of Congregibacter litoralis DSM did not oxidize thiosulfate to sulfate in concentrations of one mmol L£¿1 or above. On the other hand, a significant production of sulfate was detected upon growth with the organic sulfur compounds, cysteine and glutathione. It was found that degradation of glutathione resulted in the formation of submillimolar amounts of thiosulfate in the closely related sox-negative strain Chromatocurvus halotolerans DSM . It is proposed that the Sox multienzyme complex in Congregibacter litoralis and related members of the OM60/NOR5 clade is adapted to the oxidation of submillimolar amounts of thiosulfate and nonfunctional at higher concentrations of reduced inorganic sulfur compounds. Pelagic bacteria thriving in the oxic zones of marine environments may rarely encounter amounts of thiosulfate, which would allow its utilization as electron donor for lithoautotrophic or mixotrophic growth. Consequently, in evolution the Sox multienzyme complex in some of these bacteria may have been optimized for the effective utilization of trace amounts of thiosulfate generated from the degradation of organic sulfur compounds. 1. Introduction Aerobic marine gammaproteobacteria affiliated to the OM60/NOR5 clade are widespread in saline environments and of ecological importance in several euphotic coastal environments [1]. It is thought that aerobic anoxygenic photoheterotrophy provides some members of this clade with a selective advantage against competing obligate chemoheterotrophic bacteria [2]. Besides light energy, the oxidation of reduced inorganic sulfur compounds to sulfate is utilized by a large number of heterotrophic proteobacteria as energy yielding process for mixotrophic growth. Several pathways for the oxidation of reduced sulfur compounds to sulfate are known in bacteria, but most knowledge exists about a thiosulfate oxidizing multienzyme complex, which is encoded by a set of sulfur oxidizing (sox) genes [3]. It was found that the genes soxA, B, C, D, X, Y, and Z are present in most, if not all, bacteria that are able to oxidize thiosulfate to sulfate without forming a free intermediate [4, 5]. Hence, a common mechanism for the direct oxidation of thiosulfate to sulfate encoded by sox genes in bacteria is discussed. In a previous study the distribution of sox genes %U http://www.hindawi.com/journals/isrn.microbiology/2014/597418/