%0 Journal Article %T Treatment of Anemia Progression via Magnetite and Folate Nanoparticles In Vivo %A Hanaa Hussein Elsayed %A Al Sayed A. M. Al-Sherbini %A Eman Elsayed Abd-Elhady %A Kawkab Abd El Aziz. Ahmed %J ISRN Nanotechnology %D 2014 %R 10.1155/2014/287575 %X Iron deficiency anemia is a major global public health problem. Food fortification with iron (Fe) can be an effective strategy to control iron deficiency. An iron oxide nanoparticle (NP) is a new physical and chemical property form. These properties (small particle size, unique physical properties) make nanoiron a great scientific interest especially in the treatment of anemia. The study aimed to reduce anemia by nanoparticles (NPs). Forty-eight adult female Sprague-Dewily rats were divided into four groups (12 rats each). Group A represented a negative control. Other groups were fed standard diet iron free and three time of require zinc to reach anemic. Group B fed standard diet with ferrous sulfate until the improvement of the situation of anemia or for 8 weeks. Groups C and D were divided into three subgroups; each subgroup was fed a dose from magnetite or folate coated magnetite NPs. Results showed that symptoms of loss of appetite and severe lethargy demonstrate that magnetite and folate-coated magnetite nanoparticles have serious toxicological effects in vivo. Some doses from NPs improve blood picture during 2 weeks but change in histopathology examinations were occur in some groups within 2 weeks. Nanoparticles were considered the toxicological hazards especially the size of less than 54£¿nm. 1. Introduction Nanotechnologies enable scientists to manipulate matter at the nanoscale (one thousand millionth of a meter). Within this size-range, materials can exhibit new and unusual properties, such as altered chemical reactivity, or changed electronic, optical, or magnetic behavior [1]. Nanotechnology has also the potential to affect many aspects of food and agricultural systems. Food security, packaging materials, disease treatment, delivery systems, bioavailability, new tools for molecular and cellular biology, and new materials for pathogen detection are examples of the important items that are linked with nanotechnology within the food production chain [2, 3]. The term ¡°nanofood¡± describes food which has been cultivated, produced, processed, or packaged using nanotechnology techniques or tools, or to which manufactured nanomaterials have been added [4]. Examples of nanoingredients and manufactured nanomaterial additives include nanoparticles of iron or zinc and nanocapsules containing ingredients like coenzyme Q10 or Omega 3. Directive 2002/46/EC European Commission defined food supplements as concentrated sources of nutrients and other substances developed to supplement the normal diet and have nutritional or physiological effect whether used %U http://www.hindawi.com/journals/isrn.nanotechnology/2014/287575/