%0 Journal Article %T Modern Natural Gas Development and Harm to Health: The Need for Proactive Public Health Policies %A Madelon L. Finkel %A Jake Hays %A Adam Law %J ISRN Public Health %D 2013 %R 10.1155/2013/408658 %X High-volume horizontal hydraulic fracturing of shale formations has the potential to make natural gas a significant, economical energy source, but the potential for harm to human health is often dismissed by proponents of this method. While adverse health outcomes of medical conditions with long latency periods will not be evident for years and will depend on the exposure, duration of exposure, dose, and other factors, we argue that it would be prudent to begin to track and monitor trends in the incidence and prevalence of diseases that already have been shown to be influenced by environmental agents. The dirty downside of modern, unconventional natural gas development, as well as the potential for harm, is discussed. 1. Introduction A modern form of natural gas development has become a global ¡°game changer¡± in the quest for energy. Natural gas, abundant around the world, has a clean reputation compared to other fossil fuels since it burns less carbon when used. It is easy to transport, reasonably economical, and requires comparatively quick construction timelines and low capital costs. Traditionally, natural gas was extracted using a method that bores a vertical well in single gas reservoirs close to the surface (conventional natural gas drilling). However, drilling for natural gas in shale rock was not particularly economical, primarily because shale typically has insufficient permeability to allow significant fluid flow to a well bore. With technological advances and unconventional methods (i.e., horizontal hydraulic fracturing), gas extraction from tight formations (e.g., shale) is now feasible. This type of unconventional natural gas development relies on clustered, multi-well pads and long, horizontal laterals. Wells are drilled vertically (often thousands of feet) and horizontally in multiple directions. The method entails injecting large volumes of fluid consisting of chemicals, water, and sand into the well to fracture the shale rock that releases the natural gas. The internal pressure of the rock formation also causes a portion of the injected fracking fluids to return to the surface (flowback fluids); these fluids are often stored in a tank or pit before being pumped into trucks for transport to a disposal site. Flowback has been shown to contain a variety of formation materials, including brines, heavy metals, radionuclides, and organics, which can make wastewater treatment difficult and expensive [1]. Further, other studies found that 20% to 85% of fracturing fluids may remain in the formation, which means the fluids could continue to be a %U http://www.hindawi.com/journals/isrn.public.health/2013/408658/