%0 Journal Article %T Technoeconomic and Carbon Emission Analysis for a Grid-Connected Photovoltaic System in Malacca %A Wei Yee Teoh %A Say Yen Khu %A Chee Wei Tan %A Ing Hui Hii %A Kai Wee Cheu %J ISRN Renewable Energy %D 2012 %R 10.5402/2012/745020 %X A 1£¿MW grid-connected PV system is studied and analyzed in this project using the National Renewable Energy Laboratory¡¯s HOMER simulation software. The economic feasibility of the system in a small industry area of Malacca, Rembia in Malaysia, is investigated. The aim of the proposed PV system is to reduce the grid energy consumption and promote the use of renewable energy. In this paper, the emphasis is placed on the reduction of greenhouse gases emission. HOMER is capable of performing simulation on renewable energy systems as well as system optimization, in which, the optimization is based on the available usage data and the renewable energy data, such as solar irradiance and temperature. In addition, HOMER can perform sensitivity analysis according to different assumptions of uncertainty factors to determine its impact on the studied system and also the per unit energy cost. Finally, the most suitable or the best configuration system can be identified based on the requirements and constraints. 1. Introduction Over the decades, most of the power generation consumes nonrenewable resources particularly fossil fuel, coal, and natural gas [1]. These conventional ways of power generation are not environment friendly while also exhibiting significant sustainability problem [2]. Due to rising demands, prices of nonrenewable energies will continue to soar in the coming decades [3, 4]. Solar energy emerged as a prospective reliable energy supply in recent years. Solar technology has evolved to achieve power generation of high efficiency (up to 20%) at a cost of only roughly 2 Malaysian Ringgit (RM) per watt [5]. Utility providers in Malaysia are using mixed generation to provide the power supply needed by domestics, commercials, and industries. The generation fuel mix is a combination of 62.6% gas, 20.9% coal, 9.5% hydro, and 7% from other forms of fuel in Malaysia [6, 7]. PV generation method is still new in Malaysia but very potent due to favorable geographical location and solar irradiance index [8]. A grid-connected PV system generates electricity from sun light and the electricity is converted into grid-compliant AC by inverter [9, 10]. The process of PV electrical generation itself is totally pollution-free but the manufacturing and system setup of PV modules will impose some environmental cost [11]. An increase in portion of Renewable Energy (RE) contribution in the National Power Generation is also beneficial to both economics and politics; reducing the nation dependency on fossil energy will lessen the fossil economic effects to the nation [12]. Most %U http://www.hindawi.com/journals/isrn.renewable.energy/2012/745020/