%0 Journal Article %T DCT Watermarking Approach for Security Enhancement of Multimodal System %A Mita Paunwala %A S. Patnaik %J ISRN Signal Processing %D 2012 %R 10.5402/2012/781940 %X We have addressed a novel watermarking algorithm to support the capacity demanded by the multimodal biometric templates. Proposed technique embeds watermark in low frequency AC coefficients of selected 8£¿¡Á£¿8 DCT blocks. Selection of blocks accomplishes perceptual transparency by exploiting the masking effects of human visual system (HVS). Embedding is done by modulating the coefficient magnitude as a function of its estimated value. Neighborhood estimation is used for the weighted DC coefficients from eight neighboring DCT blocks. The weights of the DC coefficients are calculated from local image intrinsic property. For our experimentation we have used iris and finger prints as the two templates which are watermarked into standard test images. The robustness of the proposed algorithm is compared with the few state-of-the-art literature when watermarked image is subjected to common channel attacks. 1. Introduction With the current advances in information communication, world-wide-web connectivity, the security and privacy issues for authentication have increased by many folds. Applications such as electronic banking, e-commerce, m-commerce, ATM, smart cards, and so forth require high attention of data security, either while data is stored in the database/token, or transmitted over the network. This makes implementation of automatic, robust, and secure person identification a hot research topic. Biometric recognition offers a consistent solution for the user authentication to identity management systems. One of the reasons for popularity of this biometric system is its ability to differentiate between authorized person and forger who might illegally attempt to access the privilege of authorized person [1]. System accuracy depends on how efficiently it accepts genuine user and decline imposter user. Acceptance or denial of the user is confirmed based on matching between live and template database. However, a single physical characteristic or behavioral trait of an individual sometimes fails to stand as sufficient for user identification/verification. For this reason systems with integration of two or more different biometrics are currently have derived attention for being designed and made inter-operative. This recent development can provide an acceptable performance to increase the reliability of decisions as well as increases robustness with regard to fraudulent technologies when used by even more than one billion of users. Further it also helps to reduce failure to enroll rate (FER) or failure to capture rate (FCR) [2]. In [3] authors point out that a %U http://www.hindawi.com/journals/isrn.signal.processing/2012/781940/