%0 Journal Article %T Platinum and Palladium Polyamine Complexes as Anticancer Agents: The Structural Factor %A M. P. M. Marques %J ISRN Spectroscopy %D 2013 %R 10.1155/2013/287353 %X Since the introduction of cisplatin to oncology in 1978, Pt(II) and Pd(II) compounds have been intensively studied with a view to develop the improved anticancer agents. Polynuclear polyamine complexes, in particular, have attracted special attention, since they were found to yield DNA adducts not available to conventional drugs (through long-distance intra- and interstrand cross-links) and to often circumvent acquired cisplatin resistance. Moreover, the cytotoxic potency of these polyamine-bridged chelates is strictly regulated by their structural characteristics, which renders this series of compounds worth investigating and their synthesis being carefully tailored in order to develop third-generation drugs coupling an increased spectrum of activity to a lower toxicity. The present paper addresses the latest developments in the design of novel antitumor agents based on platinum and palladium, particularly polynuclear chelates with variable length aliphatic polyamines as bridging ligands, highlighting the close relationship between their structural preferences and cytotoxic ability. In particular, studies by vibrational spectroscopy techniques are emphasised, allowing to elucidate the structure-activity relationships (SARs) ruling anticancer activity. 1. Introduction Cancer represents one of the major causes of death in humans worldwide, only overcome by cardiovascular diseases, and represents a huge burden on society (both sociologically and economically). About 20 million cancer cases are expected to occur in the next two decades, which renders the quest for new and improved antineoplastic agents (namely, based on natural compounds [1]) an urgent issue in the field of Biomedicine and Human Health. Over the past decade, efforts have been made in the way of understanding the carcinogenesis process, which is recognised to consist in a progressive disorganisation at both the cellular and tissue levels. This knowledge is essential to develop new chemotherapeutic strategies, in order to control the incidence of the most recurrent cancer types. While many drug molecules are ¡°organic¡± in nature, other elements in the periodic table, particularly metals, offer a much more diverse chemistry and have important therapeutic applications [2]. The use of metal-based compounds as therapeutic drugs dates back to over 5000 years. In modern days, the study of organometallic pharmaceuticals started with the pioneering work of K£¿pf and K£¿pf-Maier (in the late 1970¡¯s), who investigated the antitumor activity of early transition metal cyclopentadienyl complexes [3]. Since %U http://www.hindawi.com/journals/isrn.spectroscopy/2013/287353/