%0 Journal Article %T Cell Transplantation and ¡°Stem Cell Therapy¡± in the Treatment of Myopathies: Many Promises in Mice, Few Realities in Humans %A Daniel Skuk %J ISRN Transplantation %D 2013 %R 10.5402/2013/582689 %X Myopathies produce deficits in skeletal muscle function and, in some cases, progressive and irreversible loss of skeletal muscles. The transplantation of myogenic cells, that is, cells able to differentiate into myofibers, is an experimental strategy for the potential treatment of some of these diseases. The objectives pursued by the transplantation of these cells are essentially three: (a) the fusion with the patient¡¯s myofibers to obtain the expression of therapeutic proteins into them, (b) the neoformation of new functional myofibers in skeletal muscles that were too degenerated by the progressive degeneration, and (c) the formation of a new pool of healthy donor-derived satellite cells. Although the repertoire of myogenic cells appears to have expanded in recent years, myoblasts are the only cells that have been demonstrated to engraft in humans. The present work aims to make a comprehensive review of the subject, from its beginnings to recent advances, including the preclinical experience in different animal models and recent clinical findings. 1. Introduction Myopathies are characterized by different degrees of localized or generalized muscle weakness from muscular etiology. This is the common symptom in a clinical picture that varies from an entity to another. Myopathies are divided into acquired and inherited; the second group is divided into main groups such as muscular dystrophies, metabolic myopathies, mitochondrial myopathies, and congenital structural myopathies. Among this group of diseases, Duchenne muscular dystrophy (DMD) probably concentrates most of the efforts for developing new therapeutic strategies. For this reason, this entity will be the focus of this review. Many considerations, however, would apply to other myopathies. The motives by which DMD draws a lot of attention are the relative frequency of the illness for a rare disease (50 cases per million is the prevalence for the male population) and its ominous prognosis: progressive skeletal muscle degeneration in the limbs and trunk, evolving during infancy and puberty, leading to almost a complete loss of skeletal muscles in those regions, restrictive respiratory insufficiency, and ultimately death by respiratory or cardiac complications. In the natural evolution of the disease, most patients die before the age of 20. Progress in supportive care, essentially noninvasive mechanical ventilation, assisted coughing, and cardioprotective medication, have made half of these patients now reach 40 years of life in advanced countries [1]. Contrasting with the improvement in prolonging %U http://www.hindawi.com/journals/isrn.transplantation/2013/582689/