%0 Journal Article %T A Hybrid Short-Term Power Load Forecasting Model Based on the Singular Spectrum Analysis and Autoregressive Model %A Hongze Li %A Liuyang Cui %A Sen Guo %J Advances in Electrical Engineering %D 2014 %R 10.1155/2014/424781 %X Short-term power load forecasting is one of the most important issues in the economic and reliable operation of electricity power system. Taking the characteristics of randomness, tendency, and periodicity of short-term power load into account, a new method (SSA-AR model) which combines the univariate singular spectrum analysis and autoregressive model is proposed. Firstly, the singular spectrum analysis (SSA) is employed to decompose and reconstruct the original power load series. Secondly, the autoregressive (AR) model is used to forecast based on the reconstructed power load series. The employed data is the hourly power load series of the Mid-Atlantic region in PJM electricity market. Empirical analysis result shows that, compared with the single autoregressive model (AR), SSA-based linear recurrent method (SSA-LRF), and BPNN (backpropagation neural network) model, the proposed SSA-AR method has a better performance in terms of short-term power load forecasting. 1. Introduction Short-term power load forecasting is one of the most important issues in economic and reliable operation of power system. Many operating decisions related to electricity power system such as unit commitment, dispatch scheduling of the generating capacity, reliability analysis, security assessment, and maintenance scheduling of the generators are based on the short-term power load forecasting. In recent years, domestic and foreign scholars have done many studies in the field of short-term power load forecasting. Currently, the short-term power load forecasting method can be divided into two categories, that is, load-series-based forecasting method and affecting-factors-based forecasting method. Although the power load shows the random and uncertain characteristic, it also has an apparent tendency. Therefore, the load-series-based forecasting method is based upon the internal structure of the short-term power load series, which includes ARIMA, ARMAX [1, 2], neural networks [3, 4], gray prediction model [5, 6], wavelet analysis [7, 8], and other forecasting methods. However, these methods have some shortcomings: the load-series-based forecasting method can only be used for data fitting and is not suitable for the treatment of regularity; the neural network method has the problem that the relation between the input variables cannot be expressed explicitly; the grey prediction model is used for the case of the little sample data; the wavelet analysis forecasting method transforms the original sequence by the orthogonal wavelets to get the subsequences of different frequency-domain %U http://www.hindawi.com/journals/aee/2014/424781/