%0 Journal Article %T A Novel Design of Parasitically Gap Coupled Patches Forming an Elliptical Patch Antenna for Broadband Performance %A Vijay Sharma %J Chinese Journal of Engineering %D 2014 %R 10.1155/2014/365048 %X A novel single layer assembly of gap coupled elements in elliptical shape is proposed in this communication to achieve broadband performance. Among the five patches considered in the present assembly, two pairs of patches having different patch areas are arranged around an edge truncated elliptical patch. The central edge truncated elliptical patch is fed through an inset feed arrangement and the other patches are parasitically gap coupled to the central patch. With such an arrangement, an enhanced impedance bandwidth of 2.45£¿GHz (or 36.2%) with respect to central frequency 6.1£¿GHz is achieved. Three resonant modes are excited with this arrangement giving improved bandwidth and gain in comparison to a conventional elliptical patch antenna. The simulated radiation patterns of proposed arrangement of patches suggest that these are identical in shape and direction of maximum radiations is directed normally to assembly of patches. 1. Introduction With an escalating demand of mobile communication systems and emergence of modern wireless communication systems, need of broadband planar antennas to cover a wide frequency range is realized. The design of a proficient wide band compact size antenna, for modern communication systems, is a major challenge. Extensive work on microstrip patch antennas has been done owing to their advantages such as being of low-profile, conformability, low-cost fabrication, and ease of integration with feed networks [1, 2]. Conversely, conventional microstrip patch antennas have very narrow impedance bandwidth (1-2%) which poses a design challenge for the microstrip antenna designer to meet the broadband requirements. There are numerous and well-known methods to increase the bandwidth of antennas, including increase of the substrate thickness, use of low permittivity substrate material, use of appropriate impedance matching and feeding techniques, use of multiple resonators, and the use of slotted antenna geometry. However, bandwidth and size of an antenna are in general mutually conflicting properties; that is, an improvement of one of these characteristics normally results in degradation of the other [3¨C6]. In recent time, several techniques have been anticipated to enhance the bandwidth of a microstrip antenna. Yang et al. [7] demonstrated the performance of a single layer wideband rectangular patch antenna with achievable impedance bandwidth greater than 20%. Abdelaziz [8] proposed a microstrip antenna with two different radiating elements connected together through a matched section which is embedded on a single layer structure %U http://www.hindawi.com/journals/cje/2014/365048/