%0 Journal Article %T Isolation of Environmental Bacteria from Surface and Drinking Water in Mafikeng, South Africa, and Characterization Using Their Antibiotic Resistance Profiles %A Suma George Mulamattathil %A Carlos Bezuidenhout %A Moses Mbewe %A Collins Njie Ateba %J Journal of Pathogens %D 2014 %I Hindawi Publishing Corporation %R 10.1155/2014/371208 %X The aim of this study was to isolate and identify environmental bacteria from various raw water sources as well as the drinking water distributions system in Mafikeng, South Africa, and to determine their antibiotic resistance profiles. Water samples from five different sites (raw and drinking water) were analysed for the presence of faecal indicator bacteria as well as Aeromonas and Pseudomonas species. Faecal and total coliforms were detected in summer in the treated water samples from the Modimola dam and in the mixed water samples, with Pseudomonas spp. being the most prevalent organism. The most prevalent multiple antibiotic resistance phenotype observed was KF-AP-C-E-OT-K-TM-A. All organisms tested were resistant to erythromycin, trimethoprim, and amoxicillin. All isolates were susceptible to ciprofloxacin and faecal coliforms and Pseudomonas spp. to neomycin and streptomycin. Cluster analysis based on inhibition zone diameter data suggests that the isolates had similar chemical exposure histories. Isolates were identified using gyrB, toxA, ecfX, aerA, and hylH gene fragments and gyrB, ecfX, and hylH fragments were amplified. These results demonstrate that (i) the drinking water from Mafikeng contains various bacterial species and at times faecal and total coliforms. (ii) The various bacteria are resistant to various classes of antibiotics. 1. Introduction Water is considered a vehicle for the propagation and dissemination of human associated bacteria [1]. Safe drinking water is a fundamental human right and if contaminated with opportunistic pathogenic environmental bacteria, it may have health implications for consumers [2, 3]. Human health should therefore be protected by preventing microbial contamination of water that is intended for consumption [4]. In rural communities, untreated surface water from rivers, dams, and streams is directly used for drinking and other domestic purposes [5]. These unprotected water sources can be contaminated with microbes through rainfall run-off and agricultural inputs, mixing with sewage effluents and faeces from wild life [6, 7], which render them unacceptable for human consumption. Faecal coliforms, Aeromonas and Pseudomonas, are used as indicators of faecal contamination in water [8] and the presence of these pathogens may have severe health implications on consumers especially those that are immunocompromised [5, 9, 10]. South Africa is a semiarid country with very low rainfall and high evaporation [11] and it has a scarcity of fresh water systems due to the highly variable and spatial distribution of %U http://www.hindawi.com/journals/jpath/2014/371208/