%0 Journal Article %T The Epidemiology of Pulmonary Nontuberculous Mycobacteria: Data from a General Hospital in Athens, Greece, 2007¨C2013 %A Marios Panagiotou %A Andriana I. Papaioannou %A Konstantinos Kostikas %A Maria Paraskeua %A Ekaterini Velentza %A Maria Kanellopoulou %A Vasiliki Filaditaki %A Napoleon Karagiannidis %J Pulmonary Medicine %D 2014 %I Hindawi Publishing Corporation %R 10.1155/2014/894976 %X Background. The epidemiology of pulmonary nontuberculous mycobacteria (NTM) in Greece is largely unknown. Objectives. To determine the incidence and the demographic, microbiological, and clinical characteristics of patients with pulmonary NTM infection and pulmonary NTM disease. Methods. A retrospective review of the demographic, microbiological, and clinical characteristics of patients with NTM culture-positive respiratory specimens from January 2007 to May 2013. Results. A total of 120 patients were identified with at least one respiratory NTM isolate and 56 patients (46%) fulfilled the microbiological ATS/IDSA criteria for NTM disease. Of patients with adequate data, 16% fulfilled the complete ATS/IDSA criteria for NTM disease. The incidence of pulmonary NTM infection and disease was 18.9 and 8.8 per 100.000 inpatients and outpatients, respectively. The spectrum of NTM species was high (13 species) and predominated by M. avium-intracellulare complex (M. avium (13%), M. intracellulare (10%)), M. gordonae (14%), and M. fortuitum (12%). The ratio of isolation of NTM to M. tuberculosis in all hospitalized patients was 0.59. Conclusions. The first data on the epidemiology of pulmonary NTM in Athens, Greece, are presented. NTM infection is common in patients with chronic respiratory disease. However, only a significantly smaller proportion of patients fulfill the criteria for NTM disease. 1. Introduction Nontuberculous mycobacterial (NTM) species are mycobacterial species other than those classified to the Mycobacterium tuberculosis complex (e.g., M. tuberculosis (Mtb), M. bovis, M. africanum, and M. microti) and M. leprae [1]. Despite being of the same family, NTM differ from those organisms that cause tuberculosis (TB) and leprosy in that they are widely dispersed in our environment, vary greatly in their ability to cause disease, and are not spread from person to person [2]. To date over 160 different species and subspecies of mycobacteria have been included in the List of Prokaryotic Names with Standing in Nomenclature (LPSN; http://www.bacterio.net) but the total number of mycobacterial species is constantly rising due to improved microbiological techniques for isolating NTM from clinical specimens and, more importantly, due to advances in molecular techniques for defining new species [1]. Accordingly, a spectrum of virulence has been identified ranging from primary pathogens such as M. kansasii that can cause disease in presumably healthy individuals and M. avium that is associated with preexisting lung disease or defects of cellular immunity to %U http://www.hindawi.com/journals/pm/2014/894976/