%0 Journal Article %T Advances in Microelectronics for Implantable Medical Devices %A Andreas Demosthenous %J Advances in Electronics %D 2014 %R 10.1155/2014/981295 %X Implantable medical devices provide therapy to treat numerous health conditions as well as monitoring and diagnosis. Over the years, the development of these devices has seen remarkable progress thanks to tremendous advances in microelectronics, electrode technology, packaging and signal processing techniques. Many of today¡¯s implantable devices use wireless technology to supply power and provide communication. There are many challenges when creating an implantable device. Issues such as reliable and fast bidirectional data communication, efficient power delivery to the implantable circuits, low noise and low power for the recording part of the system, and delivery of safe stimulation to avoid tissue and electrode damage are some of the challenges faced by the microelectronics circuit designer. This paper provides a review of advances in microelectronics over the last decade or so for implantable medical devices and systems. The focus is on neural recording and stimulation circuits suitable for fabrication in modern silicon process technologies and biotelemetry methods for power and data transfer, with particular emphasis on methods employing radio frequency inductive coupling. The paper concludes by highlighting some of the issues that will drive future research in the field. 1. Introduction Neuroengineering, the application of engineering techniques to understand, repair, replace, enhance, or otherwise exploit the properties of neural systems, is a topic that is currently generating considerable interest in the research community. The nervous system is a complex network of neurons and glial cells. It comprises the central nervous system (brain and spinal cord) and the peripheral nervous system. Injuries or diseases that affect the nervous system can result in some of the most devastating medical conditions. Conditions, such as stroke, epilepsy, spinal cord injury, and Parkinson¡¯s disease, to name but a few, as well as more general symptoms such as pain and depression, have been shown to benefit from implantable medical devices. These devices are used to bypass dysfunctional pathways in the nervous system by applying electronics to replace lost function. The first implantable medical devices were introduced in the late 1950s with the advent of the heart pacemaker [1, 2] and subsequently the cochlear implant [3, 4]. Both have restored functionality for hundreds of thousands of patients. A pacemaker uses electronics and sensors to continuously monitor the heart¡¯s electrical activity and when arrhythmia is detected, electrical stimulus is applied to the %U http://www.hindawi.com/journals/aelc/2014/981295/