%0 Journal Article %T A Microscopy and FTIR and PL Spectra Study of Polycrystalline Diamonds from Mengyin Kimberlite Pipes %A Zhijun Yang %A Rong Liang %A Xiangqing Zeng %A Mingsheng Peng %J ISRN Spectroscopy %D 2012 %R 10.5402/2012/871824 %X The results of a microscopy and FTIR and PL spectra study of the natural polycrystalline diamonds from the Mengyin kimberlite pipes show that they can be classified as the euhedral faceted polycrystalline diamonds (EFPCDs) and anhedral rounded polycrystalline diamonds (ARPCDs). Different diamond grains or their points were formed in different conditions or processes. They were not formed in diamond nucleation stage, but in the diamond growth period. They probably originated from the relatively deeper mantle and were formed in the environment like the peridotitic (P) type diamond single crystals. The EFPCDs did not undergo a remarkable dissolution process during their formation and were possibly fast formed shortly before the kimberlite eruption. The ARPCDs not only were formed at a higher temperature than the EFPCDs but also underwent a notable dissolution process and had been stored relatively longer in the mantle. Fluids or melts probably participated in the formation of the ARPCDs or modified them during the period of their storage in the mantle. 1. Introduction Polycrystalline diamonds are multigranular aggregates consisting almost entirely of diamonds. Based on the qualitative external characteristics, there are many and diverse polycrystalline varieties of diamond. Among them, balas displaying radial fibrous structure is spherulite, bort is a distinctly granular aggregate, and carbonado consisting of submicroscopic diamond particles is a cryptocrystalline aggregate [1]. But based on the scientific origin of the natural polycrystalline diamonds, previous studies [2] classified them as carbonado and framesite. Carbonado is multigranular and porous sensu stricto refers specifically to the diamond aggregates from the Central African Republic and Brazil, and it has been found that most of them occur in placers [3]. Framesite is used more broadly to describe clusters of randomly oriented microcrystalline diamonds found in association with the kimberlites all over the world. In addition, framesite is also called diamondite, which is a monomineral rock consisting almost entirely of diamonds and minor amount of other minerals such as silicate and sulfide [4, 5]. Study on the polycrystalline diamonds has not only important scientific significance but also notable practical value. Firstly, in the polycrystalline diamonds, there are randomly oriented microcrystalline diamond grains and high densities of grain boundaries which effectively impede the fracture propagation of the ( 1 1 1 ) cleavage in diamonds, so their hardness, toughness, and wear resistance %U http://www.hindawi.com/journals/isrn.spectroscopy/2012/871824/