%0 Journal Article %T Effect of Initial Stress on the Propagation Characteristics of Waves in Fiber-Reinforced Transversely Isotropic Thermoelastic Material under an Inviscid Liquid Layer %A Rajneesh Kumar %A Sanjeev Ahuja %A S. K. Garg %J Journal of Thermodynamics %D 2014 %I Hindawi Publishing Corporation %R 10.1155/2014/134276 %X The present investigation deals with the propagation of waves in fiber-reinforced transversely isotropic thermoelastic solid half space with initial stresses under a layer of inviscid liquid. The secular equation for surface equation in compact form is derived after developing the mathematical model. The phase velocity and attenuation coefficients of plane waves are studied numerically for a particular model. Effects of initial stress and thickness of the layer on the phase velocity, attenuation coefficient, and specific loss of energy are predicted graphically in the certain model. A particular case of Rayleigh wave has been discussed and the dispersion curves of the phase velocity and attenuation coefficients have also been presented graphically. Some other particular cases are also deduced from the present investigation. 1. Introduction Fiber-reinforced materials are widely used in engineering structures due to their superiority over the structural materials in applications requiring high strength and stiffness in lightweight components. Consequently, characterization of their mechanical behavior is of particular importance for structural design using these materials. Fibers are assumed an inherent material property, rather than some form of inclusion in models as Spencer [1]. In the case of an elastic solid reinforced by a series of parallel fibers it is usual to assume transverse isotropy. The idea of continuous self-reinforcement at every point of an elastic solid was introduced by Belfield et al. [2]. The characteristic property of reinforced concrete member is that its components, namely, concrete and steel, act together as a single anisotropic unit as main long as they remain in the elastic condition; that is, the two components are bound together so that there can be no relative displacement between them. The dynamical interaction between the thermal and mechanical fields in solids has great practical applications in modern aeronautics, astronautics, nuclear reactors, and high energy particle accelerators. The analysis of stress and deformation of fiber-reinforced composite materials has been an important subject of solid mechanics for last three decades. Pipkin [3] did pioneer works on the subject. Sengupta and Nath [4] discussed the problem of surface waves in fiber-reinforced anisotropic elastic media. Lord and Shulman [5] introduced a theory of generalized thermoelasticity with one relaxation time for an isotropic body. The theory was extended for anisotropic body by Dhaliwal and Sherief [6]. In this theory, a modified law of heat %U http://www.hindawi.com/journals/jther/2014/134276/