%0 Journal Article %T A Novel Approach for the Enumeration of Peripheral Blood Stem Cells Suitable for Transplantation %A Winston Costa Pereira %A Omar Alsuhaibani %A Ghaleb Elyamany %A Abdulaziz Al Abdulaaly %J Journal of Transplantation %D 2014 %I Hindawi Publishing Corporation %R 10.1155/2014/473503 %X Stem cells have the capability to proliferate and differentiate into various cells of the body. Few stem cell sources have been approved for transplantation, among them are the hematopoietic progenitor cells which are progenitors of the myeloid and erythroid lineage in the hematopoietic system, that continually provides mature blood cells during the lifespan of the individual. These well-characterized stem cells are clinically relevant in the treatment of diseases such as breast cancer, leukemias, and congenital immunodeficiencies. Peripheral blood stem transplantation is a standard procedure after its first successful transplantation more than 35 years ago. The minimum intended dose of stem cells given to the patient is cells. In this study, we are establishing a correlation between the number of stem cells enumerated and the weight of the patient as a determinant for suitable transplantation. We have established a conversion factor to deliver the required dose of approximately stem cells/kg body weight. This will ensure a uniform collection strategy that is sufficient for transplantation irrespective of the weight of the patient. This approach, if incorporated, will lead to a significantly lesser rate of bone marrow transplantation failures as sufficient number of stem cells will ensure engraftment of stem cells. 1. Introduction Peripheral blood-derived stem cells (PBSCs) have been used in bone marrow transplantation ever since its first report was published in the late бо70s [1]. In recent years, there has been rapid expansion of the clinical use of hematopoietic stem cells as well as its concomitant understanding of its basic biology. These stem cells, which are a critical component of transplantation, are progenitors to the blood cells of the body that constitutes the myeloid and erythroid lineage [2]. They continuously provide mature blood cells during the lifespan of the individual. These are one of the best characterized stem cells in the body that are clinically applicable in the treatment of diseases such as breast cancer, leukemias, and congenital immunodeficiencies [3]. Hematopoietic stem cells (HSCs) belong to a group of multipotent precursors that have a self-renewal capacity and the ability to generate different cell types that comprise of the blood-forming system [4]. Transplantation of HSCs forms the basis of consolidation therapy in cancer treatments and is used to cure or ameliorate a number of hematologic and genetic disorders [5]. HSCs are also an attractive target cell population for gene therapies because they are readily %U http://www.hindawi.com/journals/jtrans/2014/473503/