%0 Journal Article
%T 糖尿病大鼠心肌组织基因表达谱的改变及大剂量褪黑素的干预研究
Differences of Myocardial Tissue Gene Expression of Diabetic Rats and the Effect of Melatonin
%A 刘明
%A 石勇铨
%A 刘志民
%A 彭玲
%A 邹俊杰
%J Asian Case Reports in Vascular Medicine
%P 17-20
%@ 2326-3504
%D 2013
%I Hans Publishing
%R 10.12677/ACRVM.2013.23004
%X
目的:比较糖尿病大鼠与正常对照组和大剂量褪黑素组心肌组织基因谱表达差异,探讨糖尿病心肌病变发病机制。方法:选用12只SD大鼠分3组,正常对照组,链脲佐菌素(Streptozocin, STZ)诱导糖尿病组,糖尿病 + 褪黑素组。从心肌组织抽提mRNA,逆转录为cDNA,与基因芯片杂交。扫描芯片结果统计分析。结果:与正常对照组相比,糖尿病组大鼠心肌蛋白代谢相关基因明显下调,凋亡相关基因明显上调;与糖尿病组相比,大剂量褪黑素组糖及蛋白代谢相关基因明显上调,氧化应激相关基因和凋亡相关基因明显下调。结论:物质代谢、氧化应激和凋亡在糖尿病心肌病变发病机制中可能起到重要作用。
Aim: To investigate the pathogenesis of diabetic cardiomyopathy. The differences of myocardial tissue gene expressions among diabetic group, control group, and high dose melatonin group were compared by using rat genomewide spectrum illumina beads chip. Methods: Divide 12 SD rats into 3 groups, control group, streptozotocin (STZ) induced diabetic group, and diabetic and melatonin group. Extract mRNA from the myocardial tissue, transcript it into cDNA, hybridize the cDNA with gene chips, and then statistically analyze the results of gene chip scanning. Results: Compared with the control group, the protein metabolism related gene expression significantly downregulated while apoptosis relevant gene expression upregulated in diabetic rats. Compared with the diabetic group, glucose and protein metabolism related genes expression in high dose melatonin group significantly increased while apoptosis and oxidative stress genes decreased in melatonin group. Conclusion: The results of gene chip analysis showed that glucose and protein metabolism, oxidative stress and apoptosis played important roles in the pathogenesis of diabetic cardiomyopathy.
%K 糖尿病;大鼠;基因芯片;褪黑素;凋亡;氧化应激
Diabetes
%K Rat
%K Gene Microarray
%K Melatonin
%K Apoptosis
%K Oxidative Stress
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=12260