%0 Journal Article %T Generalized Estimating Equations in Longitudinal Data Analysis: A Review and Recent Developments %A Ming Wang %J Advances in Statistics %D 2014 %R 10.1155/2014/303728 %X Generalized Estimating Equation (GEE) is a marginal model popularly applied for longitudinal/clustered data analysis in clinical trials or biomedical studies. We provide a systematic review on GEE including basic concepts as well as several recent developments due to practical challenges in real applications. The topics including the selection of ˇ°workingˇ± correlation structure, sample size and power calculation, and the issue of informative cluster size are covered because these aspects play important roles in GEE utilization and its statistical inference. A brief summary and discussion of potential research interests regarding GEE are provided in the end. 1. Introduction Generalized Estimating Equation (GEE) is a general statistical approach to fit a marginal model for longitudinal/clustered data analysis, and it has been popularly applied into clinical trials and biomedical studies [1¨C3]. One longitudinal data example can be taken from a study of orthodontic measurements on children including 11 girls and 16 boys. The response is the measurement of the distance (in millimeters) from the center of the pituitary to the pterygomaxillary fissure, which is repeatedly measured at ages 8, 10, 12, and 14 years. The primary goal is to investigate whether there exists significant gender difference in dental growth measures and the temporal trend as age increases [4]. For such data analysis, it is obvious that the responses from the same individual tend to be ˇ°more alikeˇ±; thus incorporating within-subject and between-subject variations into model fitting is necessary to improve efficiency of the estimation and the power [5]. There are several simple methods existing for repeated data analysis, that is, ANOVA/MANOVA for repeated measures, but the limitation is the incapability of incorporating covariates. There are two types of approaches, mixed-effect models and GEE [6, 7], which are traditional and are widely used in practice now. Of note is that these two methods have different tendencies in model fitting depending on the study objectives. In particular, the mixed-effect model is an individual-level approach by adopting random effects to capture the correlation between the observations of the same subject [7]. On the other hand, GEE is a population-level approach based on a quasilikelihood function and provides the population-averaged estimates of the parameters [8]. In this paper, we focus on the latter to provide a review and recent developments of GEE. As is well known, GEE has several defining features [9¨C11]. The variance-covariance matrix of responses %U http://www.hindawi.com/journals/as/2014/303728/