%0 Journal Article %T Action of Chicory Fructooligosaccharides on Biomimetic Membranes %A A. F. Barbosa %A R. S. Henrique %A A. S. Lucho %A V. Paffaro Jr. %A J. M. Schneedorf %J International Journal of Electrochemistry %D 2014 %I Hindawi Publishing Corporation %R 10.1155/2014/186109 %X Fructooligosaccharides from chicory (FOSC) are functional prebiotic foods recognized to exert several well-being effects in human health and animal production, as decreasing blood lipids, modulating the gut immune system, enhancing mineral bioavailability, and inhibiting microbial growth, among others. Mechanisms of actions directly on cell metabolism and structure are however little known. In this sense this work was targeted to investigate the interaction of FOSC with biomimetic membranes (liposomes and supported bilayer membrane; s-BLM) through cyclic voltammetry, impedance spectroscopy, spectrofluorimetry, and microscopy. FOSC was able to disrupt the membrane structure of liposomes and s-BLM from the onset of molecular pores induced on it. The mechanism of interaction of fructans with biomimetic membranes suggests hydrogen bonding between the polyhydroxylated structure of the oligosaccharides and the negative polar group of L--phosphatidylcholine (PC) present in both liposomes and s-BLM. 1. Introduction As stated almost two decades ago, prebiotics are considered a nondigestible food ingredient that beneficially affects the host by selectively stimulating the growth and/or activity of one or a limited number of bacteria in the colon and thus improving host health [1]. A prebiotic group largely studied is the chicory fructooligosaccharides (FOSC). FOSC are fructans (carbohydrates with a great extent of fructosylfructose links) extracted on a commercial basis from the chicory root, namely, the Compositae family (Cichorium intybus) [2]. FOSC are also present in several fruits and vegetables species and are produced by transfructosylation of sucrose. These compounds comprise a functional food group containing mixed -D-fructans with two to four (2-1) linked fructosyl units displaying a terminal -D-glucose residue, as kestose, nystose, fructosylnystose, and fructofuranosylnystose, among others [3]. FOSC differs from inulin, a well-known fructan of a high degree of polymerization (DP), as well as oligofructose, a small FOS (DP about 5) produced during endoglycolitic hydrolysis of inulin. FOSC are considered to arrive the human gastrointestinal tract almost without hydrolysis, being a carbon source for short-chain fatty acids by bifidobacteria and lactobacilli living into the lumen [4]. Some properties of FOSC, as their nondigestible and fermentable nature, as well as their sweetening power and low caloric value, make them attractive to be used in pastry, confectionery, and dairy industries [5]. Moreover, both FOSC and inulin are also known as uniquely (2-1) %U http://www.hindawi.com/journals/ijelc/2014/186109/