%0 Journal Article %T Influence of Variable Thermal Conductivity on MHD Boundary Layer Slip Flow of Ethylene-Glycol Based Cu Nanofluids over a Stretching Sheet with Convective Boundary Condition %A N. Bhaskar Reddy %A T. Poornima %A P. Sreenivasulu %J International Journal of Engineering Mathematics %D 2014 %R 10.1155/2014/905158 %X An analysis is carried out to investigate the influence of variable thermal conductivity and partial velocity slip on hydromagnetic two-dimensional boundary layer flow of a nanofluid with Cu nanoparticles over a stretching sheet with convective boundary condition. Using similarity transformation, the governing boundary layer equations along with the appropriate boundary conditions are transformed to a set of ordinary differential equations. Employing Runge-kutta fourth-order method along with shooting technique, the resultant system of equations is solved. The influence of various pertinent parameters such as nanofluid volume fraction parameter, the magnetic parameter, radiation parameter, thermal conductivity parameter, velocity slip parameter, Biot number, and suction or injection parameter on the velocity of the flow field and heat transfer characteristics is computed numerically and illustrated graphically. The present results are compared with the existing results for the case of regular fluid and found an excellent agreement. 1. Introduction The flow analysis of nanofluids has been the topic of extensive research, due to its enhanced thermal conductivity behavior in heat transfer processes. Nanofluid is a new class of heat transfer fluid (the term nanofluid was coined by Choi [1]) that contains a base fluid and nanosized material particles (diameter less than 100£¿nm) or fibers suspended in the ordinary fluids. Nanoparticles are made from various materials, such as oxide ceramics (Al2O3, CuO), nitride ceramics (AlN, SiN), carbide ceramics (SiC, TiC), metals (Cu, Ag, Au), semiconductors, (TiO2, SiC), carbon nanotubes, and composite materials such as alloyed nanoparticles or nanoparticle core-polymer shell composites. According to Prodanovi et al. [2], nanofluids containing ultrafine nanoparticle have the capability of flowing in porous media, and these flows can improve oil recovery; hence, nanoparticles are able to control the processes of oil recovery. To improve oil recovery of viscous oils, a fluid, for example, water, is injected into the porous medium to displace the oil, since water viscosity is inferior to that of oil. However, increasing the injected fluid viscosity using nanofluids would drastically increase the recovery efficiency. Nanoparticles can also be used to determine changes in fluid saturation and reservoir properties during oil and gas production. Many studies on nanofluids are being conducted by scientists and engineers due to their diverse technical and biomedical applications. Examples include nanofluid coolant (electronics %U http://www.hindawi.com/journals/ijem/2014/905158/