%0 Journal Article %T Application of Experimental Design in Preparation of Nanoliposomes Containing Hyaluronidase %A Narayanan Kasinathan %A Subrahmanyam£¿ Mallikarjuna Volety£¿ %A Venkata Rao Josyula£¿ %J Journal of Drug Delivery %D 2014 %I Hindawi Publishing Corporation %R 10.1155/2014/948650 %X Hyaluronidase is an enzyme that catalyzes breakdown of hyaluronic acid. This property is utilized for hypodermoclysis and for treating extravasation injury. Hyaluronidase is further studied for possible application as an adjuvant for increasing the efficacy of other drugs. Development of suitable carrier system for hyaluronidase would help in coadministration of other drugs. In the present study, the hyaluronidase was encapsulated in liposomes. The effect of variables, namely, phosphatidylcholine (PC), cholesterol, temperature during film formation (T1), and speed of rotation of the flask during film formation (SPR) on percentage of protein encapsulation, was first analyzed using factorial design. The study showed that level of phosphatidylcholine had the maximum effect on the outcome. The effect of interaction of PC and SPR required for preparation of nanoliposomes was identified by central composite design (CCD). The dependent variables were percentage protein encapsulation, particle size, and zeta potential. The study showed that ideal conditions for production of hyaluronidase loaded nanoliposomes are PC¡ª140£¿mg and cholesterol 1/5th of PC when the SPR is 150£¿rpm and T1 is 50¡ãC. 1. Introduction Hyaluronic acid (HA) is a polysaccharide containing alternating units of glucuronic acid and glucosamine [1]. HA is distributed in tissues and is particularly abundant in extracellular matrices. Apart from the cellular and molecular functions, HA protects local tissues and cells against compression. HA, because of its high swelling property and viscous nature, restricts the movement of molecules including pharmacological agents across the tissues [2]. Hyaluronidase is an enzyme that catalyzes breakdown of HA. Approved label use of hyaluronidase includes treatment of extravasation injury, for hypodermoclysis and urography. Of late, hyaluronidase is tested for management of secondary complications associated with plastic surgery [3] and as an adjunct in improving the efficacy of pharmacological agents [4]. Use of hyaluronidase as an adjuvant therapy for improving the pharmacokinetic properties of coadministered drug is of particular interest as many of the regulatory bodies including US FDA have approved its use in humans [5]. The potential use of hyaluronidase as an adjunct could be exploited if a suitable carrier based delivery system for hyaluronidase is developed. This would allow coadministration of a second drug by directly incorporating them in the same delivery system and administering both drugs as a single dosage form. Few studies demonstrated that the %U http://www.hindawi.com/journals/jdd/2014/948650/