%0 Journal Article %T How Do Thermal Recovery Methods Affect Wettability Alteration? %A Abhishek Punase %A Amy Zou %A Riza Elputranto %J Journal of Petroleum Engineering %D 2014 %I Hindawi Publishing Corporation %R 10.1155/2014/538021 %X We will investigate the effect of temperature on wettability. First, we will list and summarize the different schools of thoughts from previous literature describing wettability changes for sandstone and carbonate reservoirs at elevated temperature. Next, we will describe the properties that affect wettability: how they alter wettability and how they are affected by temperature. After that, we will present indications of wettability changes and current wettability measurement techniques. Following this, case studies describing how wettability change influences reservoir characteristics and field performance during thermal recovery processes will be discussed. The thermal recovery methods included in the case studies were steam flooding, cyclic steam injection, hot water flooding, and in situ combustion. The main and very important take away from this study is that temperature induced wettability change is determined by many possible mechanisms combined together and not by just one or two phenomena occurring simultaneously. Finally, we will propose a reasonable scheme for wettability alteration during dry forward combustion, which needs further investigation. 1. Introduction Understanding formation rock wettability is very important for oil recovery optimization. Wettability is defined as the relative ability of a fluid to spread on a solid surface in the presence of other fluids [1]. The wettability of the fluid/rock system affects the distribution of fluids within a porous medium. The importance of wettability during recovery processes and enhanced oil recovery simulations has been stated previously in several literatures. For instance, a simulation study conducted by Salimi and Bruining [2] concluded that water-flooding results in low recovery in naturally fractured oil wet reservoirs as compared to water wet reservoirs. Certain wettability is favored in various reservoirs and production processes. Roosta et al. [3] stated that neutrally wet condition is favored over strongly oil wet in nonfractured reservoirs. However, not all reservoirs have the original wettability that favors production. The process of wettability alteration is therefore extremely relevant and applicable in these scenarios. Wettability is determined by a combination of many factors such as initial water saturation, saturation history, pH, oil composition and asphaltenes deposition, clay content, and stability of the thin wetting water film on the rock surface [4]. All these properties do not remain constant during production and different recovery processes. In this paper, we will %U http://www.hindawi.com/journals/jpe/2014/538021/