%0 Journal Article %T Thermoeconomic Analysis and Multiobjective Optimization of a Solar Desalination Plant %A Hamid Mokhtari %A Mokhtar Bidi %A Mahdi Gholinejad %J Journal of Solar Energy %D 2014 %I %R 10.1155/2014/892348 %X A solar desalination plant consisting of solar parabolic collectors, steam generators, and MED unit was simulated technoeconomically and optimized using multiobjective genetic algorithm. A simulation code was developed using MATLAB language programming. Indirect steam generation using different thermal oils including THERMINOL VP1, THERMINOL66, and THERMINOL59 was also investigated. Objective function consisted of 17 essential parameters such as diameter of heat collector element, collector width, steam generator pinch, approach temperatures, and MED number of effects. Simulation results showed that THERMINOL VP1 had superior properties and produced more desalinated water than other heat transfer fluids. Performance of the plant was analyzed on four characteristic days of the year to show that multiobjective optimization technique can be used to obtain an optimized solution, in which the product flow rate increased, while total investment and O&M costs decreased compared to the base case. 1. Introduction Limited sources of clean potable water have motivated humans to find alternative sources to resolve the problem. Industrial desalination plants are among the best technological solutions for clean water production from sea water. Traditional plants use fossil fuels to provide required steam but, nowadays, using solar collectors has become more attractive to prevent global pollution. For example, in the southwestern part of USA, in 2010, only about 1.0£¿Gm3/year of water demand was provided by solar desalination technologies, while, in 2014, this portion reached 3.0£¿Gm3/year, which shows 200% increase during 4 years. Prediction says that this value would be increased to 12.0£¿Gm3/year by 2050 [1]. A list of installed desalination plants operated with renewable energy sources up to 2003 is given by Tzen and Morris [2]. Beside industrial development, many research groups have focused on developing software tools to simulate, investigate, and theoretically optimize desalination plants. For example, Kamali et al. [3] developed a code for thermal simulation of multieffect desalination-thermal vapor compression (MED-TVC) unit to find optimized parameters for higher gain output ratio (GOR). They concluded that thermal optimization could lead to higher GOR in a constant surface area for a sample of 1500£¿m3/day unit. They also completed their codes to implement evaporator, thermocompressor, and ejector design and study Qeshm island MED unit [4]. Skiborowski et al. [5] used mixed integer nonlinear programming (MINLP) algorithm to optimize two reverse osmosis (RO) %U http://www.hindawi.com/journals/jse/2014/892348/