%0 Journal Article %T Long Term Solar Radiation Forecast Using Computational Intelligence Methods %A JoŁżo Paulo Coelho %A Jos¨¦ Boaventura-Cunha %J Applied Computational Intelligence and Soft Computing %D 2014 %I Hindawi Publishing Corporation %R 10.1155/2014/729316 %X The point prediction quality is closely related to the model that explains the dynamic of the observed process. Sometimes the model can be obtained by simple algebraic equations but, in the majority of the physical systems, the relevant reality is too hard to model with simple ordinary differential or difference equations. This is the case of systems with nonlinear or nonstationary behaviour which require more complex models. The discrete time-series problem, obtained by sampling the solar radiation, can be framed in this type of situation. By observing the collected data it is possible to distinguish multiple regimes. Additionally, due to atmospheric disturbances such as clouds, the temporal structure between samples is complex and is best described by nonlinear models. This paper reports the solar radiation prediction by using hybrid model that combines support vector regression paradigm and Markov chains. The hybrid model performance is compared with the one obtained by using other methods like autoregressive (AR) filters, Markov AR models, and artificial neural networks. The results obtained suggests an increasing prediction performance of the hybrid model regarding both the prediction error and dynamic behaviour. 1. Introduction Often the output observation of a stochastic process can not be associated with any exogenous excitation variable. These inabilities are due to several factors either because they are not known or because they can not be measured. In those circumstances, it is assumed that the process generates the observations, independently, without any outside intervention. A certain observer records the process response, usually in a regular time interval. The ultimate goal is to discover the process internal mechanism that generates the series of observations. There are an infinite number of possible mechanisms able to generate the sequence of observed values. Thus, in addition to the mechanism, or model which describes the dynamics of the process, it is necessary, in quantitative terms, to establish the quality of each of these models. The model, from all the possibilities, that exhibits the best performance, regarding the defined quality assessment function, will be the one who best describes the dynamic nature of the time-series generating mechanism. Autoregressive models, which only define linear relationships between past and present observations, represent one of the first attempts to explain the operating mechanism of stochastic processes [1]. However, such representations are unable to adapt to complex situations as the ones %U http://www.hindawi.com/journals/acisc/2014/729316/