%0 Journal Article %T Filter Bank Multicarrier Modulation: A Waveform Candidate for 5G and Beyond %A Behrouz Farhang-Boroujeny %J Advances in Electrical Engineering %D 2014 %R 10.1155/2014/482805 %X Recent discussions on viable technologies for 5G emphasize on the need for waveforms with better spectral containment per subcarrier than the celebrated orthogonal frequency division multiplexing (OFDM). Filter bank multicarrier (FBMC) is an alternative technology that can serve this need. Subcarrier waveforms are built based on a prototype filter that is designed with this emphasis in mind. This paper presents a broad review of the research work done in the wireless laboratory of the University of Utah in the past 15 years. It also relates this research to the works done by other researchers. The theoretical basis based on which FBMC waveforms are constructed is discussed. Also, various methods of designing effective prototype filters are presented. For completeness, polyphase structures that are used for computationally efficient implementation of FBMC systems are introduced and their complexity is contrasted with that of OFDM. The problems of channel equalization as well as synchronization and tracking methods in FBMC systems are given a special consideration and a few outstanding research problems are identified. Moreover, this paper brings up a number of appealing features of FBMC waveforms that make them an ideal choice in the emerging areas of multiuser and massive MIMO networks. 1. Introduction In the past, orthogonal frequency division multiplexing (OFDM) has enjoyed its dominance as the most popular signaling method in broadband wired [1, 2] and wireless [3, 4] channels. OFDM has been adopted in the broad class of DSL standards as well as in the majority of wireless standards, for example, variations of IEEE 802.11 and IEEE 802.16, 3GPP-LTE, and LTE-Advanced. OFDM is known to be a perfect choice for point-to-point communications, for example, from a base station to a mobile node and vice versa. It offers a minimum complexity and achieves very high bandwidth efficiency. However, it has been noted that OFDM has to face many challenges when considered for adoption in more complex networks. For instance, the use of OFDM in the uplink of multiuser networks, known as OFDMA (orthogonal frequency division multiple access), requires full synchronization of the usersĄŻ signals at the base station input. Such synchronization was found to be very difficult to establish, especially in mobile environments where Doppler shifts of different users are hard to predict/track. Morelli et al. [5] have noted that carrier and timing synchronization represents the most challenging task in OFDMA systems. To combat the problem, some researchers have relaxed on the need %U http://www.hindawi.com/journals/aee/2014/482805/