%0 Journal Article %T Studies on Mechanical, Thermal, and Morphological Properties of Glass Fibre Reinforced Polyoxymethylene Nanocomposite %A K. Mohan Babu %A M. Mettilda %J Journal of Applied Chemistry %D 2014 %R 10.1155/2014/782618 %X Polyoxymethylene is a material which has excellent mechanical properties similar to Nylon-6 filled with 30% GF. 75% POM and 25% glass fibre (POMGF) were blended with nanoclay to increase the tensile and flexural properties. Samples were extruded in twin screw extruder to blend POMGF and (1%, 3%, and 5%) Cloisite 25A nanoclay and specimens were prepared by injection moulding process. The tensile properties, flexural properties, impact strength, and hardness were investigated for the nanocomposites. The fibre pull-outs, fibre matrix adhesion, and cracks in composites were investigated by using scanning electron microscopy. 1% POMGF nanocomposite has low water absorption property. Addition of nanoclay improves the mechanical properties and thermal properties marginally. Improper blending of glass fibre and nanoclay gives low tensile strength and impact strength. SEM image shows the mixing of glass fibre and nanoclay among which 1% POMGF nanocomposite shows better properties compared to others. The thermal stability decreased marginally only with the addition of nanoclay. 1. Introduction Polyoxymethylene is an engineering thermoplastic used in precision parts requiring high stiffness, low friction, and excellent dimensional stability. As any other synthetic polymers, it is produced by different chemical firms with slightly different formulas and sold variously by such names as Delrin, Celcon, Duracon, and Hostaform. Typical applications for injection-molded POM include high performance engineering components such as small gear wheels, ball bearings, ski bindings, fasteners, knife handles, lock systems, and model rocket launch buttons. Polyoxymethylene (POM) is also known as acetal, polyacetal, and polyformaldehyde. It was introduced to industrial applications in 1956 as a potential replacement for die-cast metals and is widely used in automotive applications, electrical applications, electronics, and many industrial fields [1]. This is due to its outstanding and well-balanced properties and because no other products can be substituted for POM in some application fields. POM occupies an important position in industry as well as in society. It shows excellent physical and mechanical properties which are mainly based on its high crystallinity. It is expected that the development of high-value-added materials will result in the requirement to distinguish them from existing POM materials [2, 3]. POM, however, has a poor impact resistance, which limits its range of applications. POM polymer also suffers from limited processing temperature and low heat deflection %U http://www.hindawi.com/journals/jac/2014/782618/