%0 Journal Article %T Effect of Fiber Geometry and Representative Volume Element on Elastic and Thermal Properties of Unidirectional Fiber-Reinforced Composites %A Siva Bhaskara Rao Devireddy %A Sandhyarani Biswas %J Journal of Composites %D 2014 %R 10.1155/2014/629175 %X The aim of present work is focused on the evaluation of elastic and thermal properties of unidirectional fiber-reinforced polymer composites with different volume fractions of fiber up to 0.7 using micromechanical approach. Two ways for calculating the material properties, that is, analytical and numerical approaches, were presented. In numerical approach, finite element analysis was used to evaluate the elastic modulus and thermal conductivity of composite from the constituent material properties. The finite element model based on three-dimensional micromechanical representative volume element (RVE) with a square and hexagonal packing geometry was implemented by using finite element code ANSYS. Circular cross section of fiber and square cross section of fiber were considered to develop RVE. The periodic boundary conditions are applied to the RVE to calculate elastic modulus of composite. The steady state heat transfer simulations were performed in thermal analysis to calculate thermal conductivity of composite. In analytical approach, the elastic modulus is calculated by rule of mixture, Halpin-Tsai model, and periodic microstructure. Thermal conductivity is calculated analytically by using rule of mixture, the Chawla model, and the Hashin model. The material properties obtained using finite element techniques were compared with different analytical methods and good agreement was achieved. The results are affected by a number of parameters such as volume fraction of the fibers, geometry of fiber, and RVE. 1. Introduction There has been a considerable increase in the use of fiber composite materials in various industries like aerospace, automotive, infrastructures, and sporting goods due to their specific properties like strength, stiffness, toughness, high corrosion resistance, high wear resistance, high chemical resistance, and reduced cost. These materials can take advantage of different properties of their constituents, microstructure, and interaction between constituents in order to improve the mechanical behavior of parts made from them. The mechanics of fiber-reinforced composites are complex due to their anisotropic and heterogeneous characteristics. The evaluation of effective mechanical and thermal properties of composite materials is of paramount importance in engineering design and application. Generally, two approaches are considered in obtaining the global properties of composites: (a) macromechanical analysis and (b) micromechanical analysis. In macromechanical analysis the composite material is considered as a homogeneous orthotropic %U http://www.hindawi.com/journals/jcomp/2014/629175/