%0 Journal Article %T An Automated BIM Model to Conceptually Design, Analyze, Simulate, and Assess Sustainable Building Projects %A Farzad Jalaei %A Ahmad Jrade %J Journal of Construction Engineering %D 2014 %I Hindawi Publishing Corporation %R 10.1155/2014/672896 %X Quantifying the environmental impacts and simulating the energy consumption of buildingĄ¯s components at the conceptual design stage are very helpful for designers needing to make decisions related to the selection of the best design alternative that would lead to a more energy efficient building. Building Information Modeling (BIM) offers designers the ability to assess different design alternatives at the conceptual stage of the project so that energy and life cycle assessment (LCA) strategies and systems are attained. This paper proposes an automated model that links BIM, LCA, energy analysis, and lighting simulation tools with green building certification systems. The implementation is within developing plug-ins on BIM tool capable of measuring the environmental impacts (EI) and embodied energy of building components. Using this method, designers will be provided with a new way to visualize and to identify the potential gain or loss of energy for the building as a whole and for each of its associated components. Furthermore, designers will be able to detect and evaluate the sustainability of the proposed buildings based on Leadership in Energy and Environmental Design (LEED) rating system. An actual building project will be used to illustrate the workability of the proposed methodology. 1. Introduction Important decisions related to the design of sustainable buildings are made at the conceptual stage of their lives. This practice does not consider the integration between the design and energy analysis processes during early stages and leads to an inefficient way of backtracking to modify the design in order to achieve a set of performance criteria [1]. Energy efficiency is an important feature in naming building materials as being environmentally friendly. The ultimate goal in using energy efficient materials is to reduce the amount of artificially generated power that must be brought to a building site [2]. Generally, building materials consume energy throughout their life cycle starting by the manufacturing stage, passing through that of use, and finishing by the deconstruction phase. These stages include raw material extraction, transport, manufacture, assembly, installation as well as disassembly, deconstruction, and decomposition. The total life cycle energy of a building includes both embodied energy and operating energy [3]. Embodied energy is sequestered in building materials during all processes of production, on-site construction, transportation, final demolition, and disposal. Operating energy is expended in maintaining the inside %U http://www.hindawi.com/journals/jcen/2014/672896/