%0 Journal Article %T Free Convection in Heat Transfer Flow over a Moving Sheet in Alumina Water Nanofluid %A Padam Singh %A Manoj Kumar %J Journal of Engineering %D 2014 %I Hindawi Publishing Corporation %R 10.1155/2014/137426 %X The present paper deals with study of free convection in two-dimensional magnetohydrodynamic (MHD) boundary layer flow of an incompressible, viscous, electrically conducting, and steady nanofluid. The governing equations representing fluid flow are transformed into a set of simultaneous ordinary differential equations by using appropriate similarity transformation. The equations thus obtained have been solved numerically using adaptive Runge-Kutta method with shooting technique. The effects of physical parameters like magnetic parameter, temperature buoyancy parameter on relative velocity and temperature distribution profile, shear stress profile, and temperature gradient profile were depicted graphically and analyzed. Significant changes were observed due to these parameters in velocity and temperature profiles. 1. Introduction Applications of heat transfer through moving material in a moving fluid medium have wide range of applications in real world. Various researchers studied the concepts of moving sheet in a flowing fluid medium. Numerical and analytical solution for momentum and energy in laminar boundary layer flow over continuously moving sheet was discussed by Zheng and Zhang [1]. The authors found that the effect of velocity ratio parameter and other parameters on heat transfer were significant. Al-Sanea [2] studied the flow and thermal characteristic of a moving vertical sheet of extruded material close to and far downstream from the extrusion slot. Regimes of forced, mixed, and natural convection have been delineated, in buoyancy flow, as a function of Reynolds and thermal Grashof numbers for various values of Prandtl number and buoyancy parameter. Seddeek [3] analyzed the effect of magnetic field on the flow of micropolar fluid past a continuously moving plate. Patel et al. [4] suggested a new model for thermal conductivity of nanofluids which is found to agree excellently with a wide range of experimental published data. The momentum and heat transfer flow of an incompressible laminar fluid past a moving sheet based on composite reference velocity was studied by Cortell [5]. The author found that the direction of the wall shear stress changes in such an interval and an increase of the relative velocity parameter yields an increase in temperature. Ishak et al. [6] studied the magnetohydrodynamic boundary layer flow due to a moving extensible surface. It was found that the dual solutions exist for the flow near -axis, where the velocity profiles show a reversed flow. Bachok et al. [7] investigated steady, laminar boundary layer flow of a %U http://www.hindawi.com/journals/je/2014/137426/